
EN.601.774 Theory of Replicable ML Spring 2025

Lecture 1
Instructor: Jess Sorrell Scribe: Jess Sorrell

1 Introduction

In this course, we’ll discuss the challenges of replicability in machine learning and data
analysis, and how we can mitigate them.

Definition 1.1 ((informal) Reproducibility). An experimental result has been “reproduced”
when another team of researchers obtains the same result, using the original data.

For example, say you and your coauthors publish a new method for image classifica-
tion that you evaluated on MNIST. Another team of researchers should be able to use your
code to obtain the same results on MNIST that you obtained. This seems like it should be
straightforward, but failure of open-sourced code to reproduce published results is unfortu-
nately common in the field of ML! Reproducibility already poses some technical challenges,
but in this class we’ll be focusing on the stronger, but related notion of replicability.

Definition 1.2 ((informal) Replicability). An experimental result has been “replicated”
when another team of researchers obtains the same result, using new data (typically from
the same distribution of interest).

Replicability reflects the generalizability of published findings from the data used for
experiment to new data. For instance, if we train a medical risk prediction tool to low error
on patient data from a network of hospitals, we want that tool to also have low error on new
patients from that same network. In fact we typically want something stronger – that the
tool has low error on patients from other hospitals outside of the network from which our
training data was drawn. Replication efforts in the sciences (ML included) can increase our
confidence that published findings generalize beyond the experimental context; that they
reflect enduring phenomena in the real world and aren’t simply the result of statistical flukes
in our data.

To formalize notions of replicability, we need to specify what it means to “obtain the
same results” on “new data”. Since this is a course on ML theory, let’s start with a toy
version of a familiar example: comparing the loss of a binary classifier h on a dataset S1,
drawn i.i.d. from distribution D to its loss on a new dataset S2 drawn i.i.d. from the same
the distribution.

Setup. Fix a feature domain X and binary label space Y = {0, 1}. Let D denote a
distribution over X × Y . We’ll define our loss function to be the 0-1 loss,

ℓ(h(x), y) =

{
0, h(x) = y

1, h(x) ̸= y
.



We are given a classifier h : X → Y (h not trained using S1, so S1 and h are independent
here). We go out and collect a dataset S1 ∼i.i.d Dm (we draw m i.i.d. samples (x, y) from
D). We determine the empirical loss of h on S1

ℓS1(h) :=
1

m

m∑
i=1

ℓ(h(xi), y),

and publish this result. Another team of researchers performs the same experiment, using
a new sample S2 ∼ Dm. If our result is replicable, the other team of researchers should be
able to get “the same results,” but what does this mean?

If our scientific hypothesis was that model h performs poorly on distribution D, then a
reasonable definition would be that the second team of researchers should obtain empirical
loss similar to ours. That is, for S1, S2 ∼i.i.d. D

m

|ℓS1(h)− ℓS2(h)| < ε,

for some ε ∈ (0, 1).
So to bound the probability that a replication effort fails, we want a statement of the

form
Pr

S1,S2

[|ℓS1(h)− ℓS2(h)| ≥ ε] ≤ δ

for some δ ∈ (0, 1). Using the triangle inequality, we see that it suffices to bound the
probability that ℓS1(h) deviates from its expectation by more than ε/2.

Pr
S1,S2

[|ℓS1(h)− ℓS2(h)| ≥ ε] = Pr
S1,S2

[|ℓS1(h)− ℓD(h) + ℓD(h)− ℓS2(h)| ≥ ε]

≤ Pr
S1,S2

[|ℓS1(h)− ℓD(h)| ≥ ε/2] + Pr
S1,S2

[|ℓD(h)− ℓS2(h)| ≥ ε/2]

= 2Pr
S1

[|ℓS1(h)− ℓD(h)| ≥ ε/2]

We’ll now build up some very helpful techniques from probability theory to bound the
probability that ℓS1(h) deviates from its expectation by more than ε/2, as a function of m,
the size of the sample S1.

Theorem 1.3 (Markov’s Inequality). Let X be a non-negative random variable. Then for
any a > 0,

Pr[X ≥ a] ≤ E[X]

a
.



Proof. Let p denote the PDF of X. Since X is non-negative, we have

E[X] =

∫ ∞

v=0

v · p(v)dv by definition

=

∫ a

v=0

v · p(v)dv +
∫ ∞

a

v · p(v)dv

≥
∫ ∞

v=a

v · p(v)dv by non-negativity of X

≥
∫ ∞

v=a

a · p(v)dv v ≥ a for v ∈ [a,∞]

= a

∫ ∞

v=a

p(v)dv a is a constant

= a · Pr[X ≥ a]

We’ll apply Markov’s inequality to the r.v. X = (ℓS1(h)− ℓD(h))
2 with a = ε2.

Pr
S1

[|ℓS1(h)− ℓD(h)| ≥ ε] = Pr
S1

[(ℓS1(h)− ℓD(h))
2 ≥ ε2]

≤ E[(ℓS1(h)− ℓD(h))
2]

ε2

=
Var(ℓS1(h))

ε2
by def. of Var

=
Var( 1

m

∑m
i=1 ℓ(h(xi), yi))

ε2
unpack ℓS1(h)

=
Var(

∑m
i=1 ℓ(h(xi), yi))

m2ε2
Var(cX) = c2Var(X)

=

∑m
i=1 Var(ℓ(h(xi), yi))

m2ε2
Var(X1 +X2) = Var(X1) + Var(X2)

=
mVar(ℓ(h(x), y))

m2ε2
Var(ℓ(h(xi), yi)) = Var(ℓ(h(xj), yj))

=
Var(ℓ(h(x), y))

mε2

≤ 1

4mε2
Var(B(p)) = p(1− p) ≤ 1

4

So if we want PrS1 [|ℓS1(h)− ℓD(h)| ≥ ε] < δ, we can take m > 1
4ε2δ

. As an aside, we have
just proven Chebyshev’s inequality along the way.

Theorem 1.4 (Chebyshev’s Inequality). Let X be a random variable with non-zero variance
σ2 = Var(X). Then for any λ > 0

Pr[|X − E[X]| ≥ λσ] ≤ 1

λ2
.



Great! So now we have some guarantee that, so long as we take our sample large enough
(and so does the other team of researchers), replication efforts will be successful with good
probability! Both research teams will end up with an empirical loss ℓS(h) that is close to its
expectation ℓD(h), and therefore close to the other team’s, except with probability 2δ. But
we can do much, much better!

Theorem 1.5 (Hoeffding’s Inequality). Let X1, X2, . . . , Xm be independent, bounded random
variables with Xi ∈ [ai, bi]. Let Sm =

∑m
i=1 Xi. Then

Pr
X1,X2,...,Xm

[Sm ≥ E[Sm] + t] ≤ e
− 2t2∑m

i=1
(bi−ai)

2
.

Note this also implies

Pr
S∼Dm

[|ℓS(h)− ℓD(h)| ≥ t/m] ≤ 2e
− 2t2∑m

i=1
(bi−ai)

2

and so
Pr

S∼Dm
[|ℓS(h)− ℓD(h)| ≥ t] ≤ 2e−2t2m

We’ll prove this theorem is 2 parts. We’ll assume the following lemma (to be proved
later).

Lemma 1.6 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b]. Then
for any λ > 0,

E[eλ(X−E[X])] ≤ e
λ2(b−a)2

8

Proof. (Hoeffding’s Inequality) From Markov’s inequality, we know that for all λ, t > 0,

Pr[Sm − E[Sm] ≥ t] = Pr[eλ(Sm−E[Sm]) ≥ eλt]

≤ E[eλ(Sm−E[Sm])]

eλt
Markov’s inequality

=
E[eλ(

∑m
i=1 Xi−E[Xi])]

eλt
def of Sm and linearity of E

=
E[
∏m

i=1 e
λ(Xi−E[Xi])]

eλt

=

∏m
i=1 E[eλ(Xi−E[Xi])]

eλt
Independence of Xis

≤
∏m

i=1 e
λ2(bi−ai)

2

8

eλt
Hoeffding’s lemma

We showed this is true for all λ > 0, so in particular is must be true for λ = 4t∑m
i=1(bi−ai)2

.



Then we have

Pr[Sm − E[Sm] ≥ t] ≤
∏m

i=1 e
λ2(bi−ai)

2

8

eλt

=
e

λ2

8

∑m
i=1(bi−ai)

2

eλt

= e
λt
2
−λt

= e−
λt
2

= e
− 2t2∑m

i=1
(bi−ai)

2

Now it remains to prove the lemma.

Lemma 1.7 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b]. Then
for any λ > 0,

E[e(λX−E[X])] ≤ e
λ2(b−a)2

8


