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Domain X = {0, 1}d, Y = {0, 1}.

Overfitting with “natural” adaptive SQs

Algorithm 1 Query learner
Inputs/Parameters: Sample S ∼ Dm

1: P = ∅
2: for i ∈ [d] do

3: ϕi(x, y) =

{
1, xi = y

0, o.w.

4: ai ← 1
m

∑
(x,y)∈S[ϕ(x, y)]

5: if ai ≥ 1
2
+ 1√

m
then

6: P = P ∪ i
7: end if
8: return f(x) = ⌊ 1

|P |
∑

i∈P xi⌉
9: end for

Claim 0.1. When D is the uniform distribution over X × Y, ∃ constant c such that with
probability at least 1− δ, if d ≥ cmax{m, log(1/δ)}:

|accS(f)− accD(f)| ≥ .49

Compare to the accuracy guarantee we have for non-adaptive statistical queries, from
which we would expect

|accS(f)− accD(f)| ∈ O

(√
log(d/δ)

m

)
.

Do replicable SQs help? Since the first d queries are non-adaptive, we know that so long
as we use a large enough sample, we can guarantee
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[f r
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] > 1− ρ



where f r
Si

= A(Si; r) . It follows that
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≤ e−2τ2m + ρ

∈ O(ρ)

so long as we take m ∈ Ω( log 1/ρ
τ2

).
However, to ensure that PrS1,S2,r[f

r
S2
̸= f r

S1
] ≤ ρ, we need to make d non-adaptive repli-

cable statistical queries with ρ′ = ρ/d, so we need O( d2

τ2ρ2
) samples. Which is already worse

than resampling!

Algorithmic stability

We’ll now turn to other stability notions and see how they can be used to get us the data-
reuse guarantees of replicability (more cheaply).

Setup:

• X - data domain

• Y - label space

• Z - sample space X × Y

• H - output space

Definition 0.2. Two datasets S, S ′ ∈ Zm are called neighboring if they differ in a single
element.

Definition 0.3. A deterministic algorithm A : Zm → H is ε-uniform change-one (UCO)
stable if for all neighboring datasets S, S ′ ∈ Zm, and for all inputs x ∈ X ,

|hS(x)− hS′(x)| ≤ ε

where hS(x) = A(S) and hS′ = A(S ′).



Example: k-NN

Algorithm 2 k-NN(S, x′)
Inputs/Parameters: Sample S ∈ Zm

x′, a point to be classified

1: Let i1, . . . , ik be the indices of the k points in S that are nearest to x′ (i.e., that minimize
∥x′ − xi∥, breaking ties arbitrarily)

2: return hS(x
′) = 1

k

∑k
j=1 yj

Claim 0.4. k-NN classification is 1
k
-UCO stable.

Proof. For every point x′ and data set S, changing a single point in S changes at most one
of the k nearest neighbors, so the average label can go up or down by at most 1/k.

Define accuracy accD(hS) = 1− E(x,y)∼D[|hS(x)− y|] and

accS(hS) = 1− 1
m

∑
(x,y)∈S

|hS(x)− y|

.

Theorem 0.5 (Bousquet-Elisseef’02). Let A be ε-UCO stable, for a hypothesis class H such
that h ∈ H is bounded. That is, h : X → [0,M ] for all h ∈ H. Then for every distribution
D over X × {0, 1}, we have that except with probability at most δ over S ∼ Dm:

|accS(hS)− accD(hS)| ≤ ε+ (2εm+M)

√
ln 1/δ

2m

Theorem 0.6 (McDiarmid’s Inequality). Let F : Zm → R be a function such that for all
neighboring datasets S, S ′,

|F (S)− F (S ′)| ≤ ε.

Then

Pr
S
[|F (S)− E

S
[F ]| > t] ≤ 2e

−2t2

mε2

Proof idea:

1. Use stability of A to show that ES[accS(hS)− accD(hS)] ≤ ε

2. Use stability to show that |(accS(hS)− accD(hS))− (accS′(hS′)− accD(hS′))| ≤ 2ε+ M
m

3. Apply McDiarmid’s inquality to F (S) = accS(hS)− accD(hS) to show that with high
probability, F (S) must be close to its expectation

Claim 0.7. Let A be ε-UCO stable. Then for every distribution D over X × {0, 1}, the
expected generalization error of the classifier is at most ε, that is:

|E
S
[accS(hS)− accD(hS)]| ≤ ε



Proof.

E
S
[accS(hS)− accD(hS)] = E

S
[ E
(x,y)∼D

[|hS(x)− y|]− 1
m

m∑
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= 1
m
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 lin of exp
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m
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 E
S
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[|hSi→(x,y)
(xi)− yi| − |hS(xi)− yi|]

 equivalent dist

≤ 1
m
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i=1
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ε ε-UCO stability

= ε


