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Domain X = {0, 1}d, Y = {0, 1}.

Theorem 0.1 (Bousquet-Elisseef’02). Let A be ε-UCO stable, for a hypothesis class H such
that h ∈ H is bounded. That is, h : X → [0, 1] for all h ∈ H. Then for every distribution D
over X × {0, 1}, we have that except with probability at most δ over S ∼ Dm:

|accS(hS)− accD(hS)| ≤ ε+ (2εm+ 1)

√
ln 2/δ

2m

Theorem 0.2 (McDiarmid’s Inequality). Let F : Zm → R be a function such that for all
neighboring datasets S, S ′,

|F (S)− F (S ′)| ≤ τ.

Then

Pr
S
[|F (S)− E

S
[F ]| > t] ≤ 2e

−2t2

mτ2

Proof idea:

1. Use stability of A to show that ES[accS(hS)− accD(hS)] ≤ ε

2. Use stability to show that |(accS(hS)− accD(hS))− (accS′(hS′)− accD(hS′))| ≤ 2ε+ M
m

3. Apply McDiarmid’s inquality to F (S) = accS(hS)− accD(hS) to show that with high
probability, F (S) must be close to its expectation

Claim 0.3. Let A be ε-UCO stable. Then for every distribution D over X × {0, 1}, the
expected generalization error of the classifier is at most ε, that is:

|E
S
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Proof.
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Claim 0.4. Let A be an ε-UCO stable algorithm and hS = A(S). Let

G(hS) = accD(hS)− accS(hS) = E
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Then
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Proof.
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Theorem 0.1. The proof follows by applying McDiarmid’s inequality to F (S) = G(hS). We
just established that |F (S)− F (S ′)| ≤ 2ε+ 1

m
= τ . It follows that
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Great, so what does this tell us about our overfitting SQ learner? Does it tell us something
about how we could alter the procedure for answering adaptive SQs to prevent overfitting?
If we could somehow make the entire sequence of queries and answers O( 1

m
)-UCO-stable, for

instance, then by rearranging the above, we’d know that by taking m ∈ O( log 1/δ
ε2

) samples,
we could obtain generalization error O(ε). And hey, that’s how many samples we needed
to answer a single query! But how do we ensure the entire adaptive sequence of queries is
stable? Empirically estimating the value of the query is already stable in the sense that
changing a single element of the sample can change the output of the estimate by at most
1
m
. And yet, we can observe that the hypothesis output by the SQ learner that answers its

queries with empirical estimates is highly unstable.
What if we could ensure stability under post-processing? If we could answer queries

through some mechanismM such that, not only isM(S) stable, but A◦M(S) is stable for
any A, we’d be set!

Definition 0.5 (TV distance). The total variation distance between two distributionsD1, D2

over events X is defined

dTV (D1, D2) = sup
X⊆X
|D1(X)−D2(X)| = 1

2

∫
x∈X
|D1(x)−D2(x)|dx.

If X is discrete, we have

dTV (D1, D2) =
1
2

∑
x∈X

|D1(x)−D2(x)|.

For random variables X, Y , we’ll write dTV (X, Y ) to denote the TV distance between
the distributions of X and Y .



Definition 0.6 (TV stability). A randomized algorithmM is ε-TV stable if for all neigh-
boring datasets S, S ′,

dTV (M(S),M(S ′)) ≤ ε

Claim 0.7 (TV stability is preserved under post-processing.). Let X,Y be random variables
over Z. Then for every (potentially randomized) algorithm A : Z → O

dTV (A(X),A(Y )) ≤ dTV (X, Y )

Proof. Let R denote the randomness of A and let X, Y be random variables over Z. We
first observe that, because R is independent of X and Y

dTV ((X,R), (Y,R)) = 1
2

∫
z∈Z

∫
r∈R
|Pr
X
(z) · Pr(r)− Pr

Y
(z) · Pr(r)|drdz

= 1
2

∫
z∈Z
|Pr
X
(z)− Pr

Y
(z)|dz

= dTV (X, Y )

Letting F = A−1(O) denote the set of (z, r) ∈ Z ×R such that A(z) ∈ O.
Then

Pr(A(X) ∈ O)− Pr(A(Y ) ∈ O) = Pr((X,R) ∈ F )− (Pr(Y,R) ∈ F )

≤ dTV ((X,R), (Y,R))

= dTV (X, Y )

Algorithm 1 Gaussian mechanism(σ2, S)
Inputs/Parameters:
σ2, variance for Gaussian
S = {xi}mi=1, dataset

1: Receive a statistical query ϕ : X → [0, 1]
2: ν ← N (0, σ2)
3: return 1

m

∑m
i=1 ϕ(xi) + ν

Claim 0.8. The Gaussian mechanism with parameter σ2 is 1
2mσ

-TV stable.


