EN.601.774 Theory of Replicable ML

Spring 2025

Lecture 12

Instructor: Jess Sorrell Scribe: Jess Sorrell

Acknowledgements. Much of this material (and the material for the next few weeks) is lifted wholesale from the course notes of Aaron Roth and Adam Smith, available at

https://www.adaptivedataanalysis.com

Domain $\mathcal{X} = \{0, 1\}^d$, $\mathcal{Y} = \{0, 1\}$.

Definition 0.1 (TV stability). A randomized algorithm \mathcal{M} is ε -TV stable if for all neighboring datasets S, S',

$$d_{TV}(\mathcal{M}(S), \mathcal{M}(S')) \le \varepsilon$$

Algorithm 1 Gaussian mechanism(σ^2 , S)

Inputs/Parameters:

 σ^2 , variance for Gaussian

 $S = \{x_i\}_{i=1}^m$, dataset

- 1: Receive a statistical query $\phi: \mathcal{X} \to [0, 1]$
- 2: $\nu \leftarrow \mathcal{N}(0, \sigma^2)$ 3: **return** $\frac{1}{m} \sum_{i=1}^{m} \phi(x_i) + \nu$

Claim 0.2. The Gaussian mechanism with parameter σ^2 is $\frac{1}{\sqrt{2\pi}m\sigma}$ -TV stable.

Proof. For dataset S, the output is distributed as a Gaussian distribution D with $\mu =$ $\frac{1}{m}\sum_{i=1}^{m}\phi(x_i)$ and variance σ^2 . For dataset S', it is distributed as a Gaussian D' with $\mu' = \frac{1}{m}\sum_{i=1}^{m}\phi(x_i')$ and variance σ^2 , where $|\mu' - \mu| \leq \frac{1}{m}$. So for all $x \in \mathcal{X}$,

$$D(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$D'(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu')^2}{2\sigma^2}}$$

WLOG, say $\mu' = \mu + \frac{1}{m}$. Then D(x) > D'(x) up to some point $\bar{\mu}$, where $D(\bar{\mu}) = D'(\bar{\mu})$.

$$(x - \mu)^2 = (x - \mu')^2$$

$$= (x - \mu - \frac{1}{m})^2$$

$$= (x - \mu)^2 + \frac{1}{m^2} - 2(\frac{x - \mu}{m})$$

So we want to find x such that

$$0 = \frac{1}{m} - 2(x - \mu)$$
$$x = \mu + \frac{1}{2m}$$

Therefore

$$d_{TV}(D, D') = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\frac{-1}{2m}}^{\frac{1}{2m}} e^{-\frac{x^2}{2\sigma^2}} dx$$

$$\leq \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\frac{-1}{2m}}^{\frac{1}{2m}} 1 dx$$

$$= \frac{1}{\sqrt{2\pi}m\sigma}$$

Definition 0.3 (Multiplicative distance (pure DP metric)). The multiplicative distance between two distributions D_1, D_2 over events \mathcal{X} is defined

$$d_{\diamond}(D_1, D_2) = \sup_{X \subseteq \mathcal{X}} \left| \ln \frac{D_1(X)}{D_2(X)} \right|$$

If $d_{\diamond}(D_1, D_2) \leq \varepsilon$, then for all $X \subseteq \mathcal{X}$

$$D_1(X) \le e^{\varepsilon} D_2(X).$$

This notion of distance gives another stability notion called differential privacy

Definition 0.4 (Differential Privacy). A randomized algorithm $\mathcal{M}: \mathcal{Z}^m \to \mathcal{O}$ is ε -DP if for all measurable subsets $O \subset \mathcal{O}$ and neighboring datasets S, S':

$$\Pr[\mathcal{M}(S) \in O] \le e^{\varepsilon} \Pr[\mathcal{M}(S') \in O]$$

Laplace distribution $Lap(\varepsilon,\mu)$ has PDF $f(x) = \frac{1}{2\varepsilon}e^{\frac{-|x-\mu|}{\varepsilon}}$. We'll write $Lap(\varepsilon) = Lap(\varepsilon,0)$.

Algorithm 2 Laplace mechanism(ε , S)

Inputs/Parameters:

 ε , scale parameter for Laplace distribution

 $S = \{x_i\}_{i=1}^m$, dataset

- 1: Receive a statistical query $\phi: \mathcal{X} \to [0, 1]$
- 2: $\nu \leftarrow Lap(\frac{1}{m\varepsilon})$ 3: **return** $\frac{1}{m}\sum_{i=1}^{m}\phi(x_i) + \nu$

Claim 0.5. The Laplace mechanism with parameter ε satisfies ε -DP

Proof. The Laplace distribution $Lap(\frac{1}{m\varepsilon})$ has PDF $f(x) = \frac{m\varepsilon}{2}e^{-m\varepsilon|x-\mu|}$. For neighboring datasets, $|\mu - \mu'| \leq \frac{1}{m}$, and so for all x the ratio

$$\frac{D(x)}{D'(x)} = \frac{e^{-m\varepsilon|x-\mu|}}{e^{-m\varepsilon|x-\mu'|}}$$
$$= e^{m\varepsilon(|x-\mu'|-|x-\mu|)}$$
$$\leq e^{\varepsilon}.$$

Claim 0.6 (DP \Rightarrow TV stability). $d_{TV}(D, D') \leq \frac{1}{2}(e^{d_{\diamond}(D, D')} - 1)$

Proof.

$$d_{TV}(D, D') = \sup_{E \subseteq \mathcal{O}} |D(E) - D'(E)|$$

$$\leq \sup_{E \subseteq \mathcal{O}} |e^{d_{\diamond}(D, D')} D'(E) - D'(E)|$$

$$= \sup_{E \subseteq \mathcal{O}} |D'(E)(e^{d_{\diamond}(D, D')} - 1)|$$

$$\leq \frac{1}{2}(e^{d_{\diamond}(D, D')} - 1) \qquad \text{if } D'(E) \leq 1/2$$

IF D'(E) > 1/2, then $D'(E^c) \le 1/2$ so we have

$$d_{TV}(D, D') = \sup_{E \subseteq \mathcal{O}} |D(E) - D'(E)|$$

$$= \sup_{E \subseteq \mathcal{O}} |1 - D(E^c) - (1 - D'(E^c))|$$

$$= \sup_{E \subseteq \mathcal{O}} |D(E^c) - D'(E^c)||$$

$$\leq \sup_{E \subseteq \mathcal{O}} |e^{d_{\diamond}(D, D')} D'(E^c) - D'(E^c)|$$

$$= \sup_{E \subseteq \mathcal{O}} |D'(E^c)(e^{d_{\diamond}(D, D')} - 1)|$$

$$\leq \frac{1}{2} (e^{d_{\diamond}(D, D')} - 1)$$