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Domain X = {0, 1}d, Y = {0, 1}.

Theorem 0.1. Let M : Zm → Q be an ε-TV stable algorithm that outputs a query q ∈ Q.
Then for every distribution D, except with probability δ over the choice of sample:

|E
r
[qS(S)− qS(D)]| ≤ ε+ (2εm+ 1)

√
log 2/δ

m
,

where qS = M(S).

Wait, why aren’t we proving high probability bounds? These may be high probability
over the sample, but they’re only in expectation over the randomness. Ideally, we would like
a statement of the form

Theorem 0.2. Let M : Zm → Q be an ε-TV stable algorithm that outputs a query q ∈ Q.
Then for every distribution D, except with probability δ

Pr
S,r

[|qS(S)− qS(D)| > ε+ f(ε, δ,m)] ≤ δ

where qS = M(S)

like we had for UCO algorithms. We will eventually prove a theorem of this form, but
let’s first see what happens when we try to follow the UCO argument, but for TV-stability.

1. Use stability of M to prove that |ES∼Dm [qS(S)− qS(D)]| ≤ ε

2. Prove that G(S) = qS(S)− qS(D) satisfies |G(S)−G(S ′)| ≤ ε

3. Apply McDiarmid’s inequality to conclude that G(S) is close to its expectation with
high probability, and so the generalization error of qS must be small with high proba-
bility over S.

What happens when we try to rerun that argument now?

1. Use stability of M to prove that |ES∼Dm

r
[qS(S)− qS(D)]| ≤ ε



2. Prove that G(S) = Er[qS(S)− qS(D)] satisfies |G(S)−G(S ′)| ≤ ε

3. Apply McDiarmid’s inequality to conclude that G(S) must be close to ES∼Dm [G(S)]
with high probability, and so the expected generalization error of qS (over the internal
randomness r of M) must be small with high probability.

Let qS;r = A(S; r) and note that trying G(S, r) = qS;r(S) − qS;r(D) doesn’t satisfy the
assumptions of McDiarmid’s inequality! We have no stability guarantees regarding pertur-
bations to the randomness of, e.g., the Gaussian mechanism. Similarly, we might want to
try Gr(S) = qS;r(S) − qS;r(D), but our stability guarantees are on the distribution of out-
puts of M, not a single output. The only function we have stability guarantees for here is
G(S) = Er[qS(S)− qS(D)].

Claim 0.3. For all X, Y on O with dTV (X, Y ) ≤ ε, and for all functions f : O → [0, 1],

|E[f(X)]− E[f(Y )]| ≤ ε

Proof. Let DX , DY denote the distributions of X, Y .

E[f(X)]− E[f(Y )] =

∫
o∈O

f(o)DX(o)do−
∫
o∈O

f(o)DY (o)do

=

∫
o∈O

f(o)(DX(o)−DY (o))do

=

∫
o:DX(o)>DY (o)

f(o)(DX(o)−DY (o))do+

∫
o:DX(o)≤DY (o)

f(o)(DX(o)−DY (o))do

≤
∫
o:DX(o)>DY (o)

f(o)(DX(o)−DY (o))do

≤
∫
o:DX(o)>DY (o)

|DX(o)−DY (o)|do

= dTV (X, Y )

≤ ε

Claim 0.4. Let M : Zm → Q be an ε-TV stable algorithm that outputs a query q ∈ Q.
Then for every distribution D,we have:

| E
S∼Dm

r

[qS(S)− qS(D)]| ≤ ε



Proof.

E
S∼Dm

r

[qS(S)− qS(D)] = E
S,r
[ 1
m

m∑
i=1

qS(zi)− E
z∼D

[qS(z)]]

= 1
m

m∑
i=1

E
S,r
[qS(zi)]− E

S,r
z∼D

[qS(z)]

 lin of exp

= 1
m

m∑
i=1

 E
S,r
z∼D

[qS(zi)− qSi→z
(zi)]

 equivalent dist

= 1
m

m∑
i=1

(
E
S

z∼D

[E
r
[qS(zi)]− E

r
[qSi→z

(zi)]]

)

From ε-TV stability of M, we know that dTV (qS, qSi→z
) ≤ ε, but how does that help us

bound

E
r
[qS(zi)]− E

r
[qSi→z

(zi)]?

Let fzi(q) = q(zi). Then

E
r
[qS(zi)]− E

r
[qSi→z

(zi)] = E
r
[fzi(qS)]− E

r
[fzi(qSi→z

)]

Note that fzi : Q → [0, 1], and in the equation above, it’s evaluated on two random
variables that have dTV (qS, qSi→z

) ≤ ε. Then from our result in Step 1, we have that for all
S ∈ Zm, z ∈ Z,

E
r
[fzi(qS)]− E

r
[fzi(qSi→z

)] ≤ ε

Applying this bound, we continue

1
m

m∑
i=1

(
E
S

z∼D

[E
r
[qS(zi)]− E

r
[qSi→z

(zi)]]

)
≤ 1

m

m∑
i=1

(
E
S

z∼D

ε

)
from ε-TV stability, Step 1

= ε

Step 2 down! On to Step 3.

Claim 0.5. Let G(S) = Er[qS(S)− qS(D)]. Then |G(S)−G(S ′)| ≤ ε.



Proof. We will again consider functions f : Q → [0, 1], fz(q) = q(z)

|G(S)−G(S ′)| = |E
r
[qS(S)− qS(D)]− E

r
[qS′(S ′)− qS′(D)]|

= | 1
m

∑
i=1

E
r
[qS(S)− qS(D)− qS′(S ′) + qS′(D)]|

= | 1
m

∑
i=1

E
r
[qS(zi)− qS′(z′i)] + E

z∼D
E
r
[qS′(z)− qS(z)]]|

= | 1
m

∑
i=1

E
r
[qS(zi)− qS′(z′i)] + E

z∼D
E
r
[fz(qS′)]− E

r
[fz(qS)]|

≤ | 1
m

∑
i=1

E
r
[qS(zi)− qS′(z′i)] + ε|

≤ | 1
m

∑
i=1

E
r
[fzi(qS)− fz′i(qS′)] + ε|

≤ | (m−1)ε
m

+ 1
m
+ ε|

≤ 2ε+ 1
m


