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Domain X = {0, 1}d, Y = {0, 1}.

Theorem 0.1. Let M : Zm → Q be an ε-TV stable algorithm that outputs a query q ∈ Q.
Then for every distribution D, except with probability δ over the choice of sample:

|E
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,

where qS = M(S).

1. Use stability of M to prove that |ES∼Dm

r
[qS(S)− qS(D)]| ≤ ε

2. Prove that G(S) = Er[qS(S)− qS(D)] satisfies |G(S)−G(S ′)| ≤ 2ε+ 1
m

3. Apply McDiarmid’s inequality to conclude that G(S) must be close to ES∼Dm [G(S)]
with high probability, and so the expected generalization error of qS (over the internal
randomness r of M) must be small with high probability.

Claim 0.2. Let M : Zm → Q be an ε-TV stable algorithm that outputs a query q ∈ Q.
Then for every distribution D,we have:

| E
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[qS(S)− qS(D)]| ≤ ε

Claim 0.3. Let G(S) = Er[qS(S)− qS(D)]. Then |G(S)−G(S ′)| ≤ ε.

Step 3, apply McDiarmid! Now that we’ve done steps 2 and 3, this is really the same
argument from last lecture, applying McDiarmid’s inequality to G(S) = Er[qS(S)− qS(D)].



We just established that |G(S)−G(S ′)| ≤ 2ε+ 1
m

(call this τ). It follows that
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It follows that
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Great! So now we have a (weaker than we’d like) generalization guarantee for TV-stable
algorithms. But for this to help us prove generalization guarantees for a sequence of adaptive
statistical queries, we now need to show that TV-stability is preserved under composition.

Previously, we showed that it’s preserved under post-processing, so any algorithm that
takes the output of a TV-stable algorithm as its only input will itself be TV-stable. But
what about the composition of many such algorithms?

Let M be a mechanism that takes as input a dataset S and interacts with an analyst A
over k rounds, receiving adaptively chosen queries from A and responding with answers to
these queries. We can break this mechanism into k separate mechanisms M1,M2, . . . ,Mk,
each of which take as input

• Dataset S

• A query from the analyst ϕ

• Global state (we need to add this state input to model the memory of the interaction
between A and M)

and output

• An answer to query ϕ



• Updated global state

These separate mechanisms interact with k separate algorithms Ai, which take as input

• The answer to a query, a

• Global state

and output

• A new query ϕ

• Updated global state

We will call M the adaptive sequential composition of M1,M2, . . . ,Mk. And write A ◦M
to denote the interactive process between A and M.

Mi(S, ϕ, state) is ε-TV stable if for all neighboring datasets S, S ′, for all queries ϕ, and
for all values of statei−1, the distribution over (a, statei) outputs of Mi satisfies:

dTV (Mi(S, ϕ, statei−1),Mi(S
′, ϕ, statei−1)) ≤ ε

Theorem 0.4. Let M = (M1,M2, . . . ,Mk) be the sequential adaptive composition of k
mechanisms, each of which is ε-TV stable. Then for any algorithm A that is a post-processing
of Mi’s, the interaction A ◦M is kε-TV stable.

Now that we’ve decomposed the interaction between A and M into k exchanges between
Ai and Mi, note that if Mi is ε-TV stable, then Ai+1 ◦ Mi is also ε-TV stable by the
post-processing result we showed previously. Ai+1 only takes the outputs of Mi as input
(the answer ai and the state statei), so it is simply a post-processing of a stable algorithm.
So for notational simplicity, we can let Mi “absorb” Ai+1, so now Mi takes as input

• Dataset S

• A query ϕi

• Global statei−1 (we need to add this state input to model the memory of the interaction
between A and M)

and outputs

• A new query ϕi+1

• Updated global statei

Let Y = M(S) be the random variable denoting the sequence of outputs of M on
dataset S when it is interacting with a fixed A. Let Ok be the outcome space that Y is
distributed over. Y can also be written as a joint distribution Y = (Y1, Y2, . . . , Yk), where
Yi = Mi(S, Y1, Y2, . . . , Yi−1). We will similarly write Z = M(S ′), and Z = (Z1, Z2, . . . , Zk)
for Zi = Mi(S

′, Z1, Z2, . . . , Zk).
To show that M is kε-TV stable, it would suffice to show that dTV (Yk, Zk) ≤ kε. Next

time, we will show something somewhat stronger, which is

dTV (Y, Z) ≤ kε.


