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Domain X = {0, 1}d, Y = {0, 1}.

Theorem 0.1. Let M = (M1,M2, . . . ,Mk) be the sequential adaptive composition of k
mechanisms, each of which is ε-TV stable. Then for any algorithm A that is a post-processing
ofMi’s, the interaction A ◦M is kε-TV stable.

Proof. Now that we’ve decomposed the interaction between A and M into k exchanges
between Ai andMi, note that ifMi is ε-TV stable, then Ai+1 ◦Mi is also ε-TV stable by
the post-processing result we showed previously. Ai+1 only takes the outputs ofMi as input
(the answer ai and the state statei), so it is simply a post-processing of a stable algorithm.
So for notational simplicity, we can letMi “absorb” Ai+1, so nowMi takes as input

• Dataset S

• A query ϕi

• Global statei−1 (we need to add this state input to model the memory of the interaction
between A andM)

and outputs

• A new query ϕi+1

• Updated global statei

Let Y = M(S) be the random variable denoting the sequence of outputs of M on
dataset S when it is interacting with a fixed A. Let Ok be the outcome space that Y is
distributed over. Y can also be written as a joint distribution Y = (Y1, Y2, . . . , Yk), where
Yi =Mi(S, Y1, Y2, . . . , Yi−1). We will similarly write Z =M(S ′), and Z = (Z1, Z2, . . . , Zk)
for Zi =Mi(S

′, Z1, Z2, . . . , Zk).
To show that M is kε-TV stable, it would suffice to show that dTV (Yk, Zk) ≤ kε. We

will show something somewhat stronger, which is

dTV (Y, Z) ≤ kε.



Let Y i
1 = (Y1, Y2, . . . , Yi) and similarly Zi

1 = (Z1, Z2, . . . , Zi). We will argue inductively,
showing

Base case: dTV (Y1, Z1) ≤ ε
Inductive step: dTV (Y

i+1
1 , Zi+1

1 ) ≤ dTV (Y
i
1 , Z

i
1) + ε.

To argue the base case, we just need the stability ofM1. It follows immediately that

dTV (Y1, Z1) = dTV (M1(S),M1(S
′)) ≤ ε.

We now turn to arguing the inductive step. Let oi1 = (o1, o2, . . . , oi) and let
Y i+1
1 (oi+1

1 ) = Pr[Y i+1
1 = oi+1

1 ]. We want to bound

dTV (Y
i+1
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1 ) = 1
2

∫
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1 (o)|do

= 1
2

∫
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∫
o∈O
|Y i+1
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Observe that for all o = (o1, . . . , oi+1) ∈ Oi+1,

Y i+1
1 (oi+1, o

i
1) = Yi+1(oi+1 | oi1) · Y i

1 (o
i
1).

So for all o ∈ O,

Y i+1
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1 (o, oi1) = Yi+1(o | oi1) · Y i
1 (o

i
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i
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= Yi+1(o | oi1) · Y i
1 (o

i
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1(o
i
1)

+ Zi+1(o | oi1) · Y i
1 (o

i
1)− Zi+1(o | oi1) · Y i

1 (o
i
1)

= Y i
1 (o

i
1)(Yi+1(o | oi1)− Zi+1(o | oi1)) + Zi+1(o | oi1)(Y i
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i
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Inserting the above into our expression for dTV (Y
i+1
1 , Zi+1

1 ), we obtain
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It follows that

dTV (M(S),M(S ′)) = dTV (Y, Z) = dTV (Y
k
1 , Z

k
1 ) = kε



Adaptive composition for DP algorithms

Definition 0.2 (Approximate Differential Privacy). A randomized algorithmM : Zm → O
is (ε, δ)-DP if for all measurable subsets T ⊂ O and neighboring datasets S, S ′:

Pr[M(S) ∈ T ] ≤ eε Pr[M(S ′) ∈ T ] + δ

Note that for (ε, 0)-DP algorithms, this is equivalent to the statement

ln

(
Pr[M(S) ∈ O]

Pr[M(S ′) ∈ O]

)
≤ ε

Theorem 0.3. For all ε ≥ 0 and δ′ > 0, the adaptive composition of k algorithms, each of
which is ε-DP, is (ϵ

√
2k ln 1/δ′ + kε(eε − 1), δ′)-DP.

Putting it all together

Let A be a statistical query algorithm that makes k queries toM, all of which are answered
by the Gaussian mechanism. Then to ensure expected generalization error at most τ for
A ◦M, it suffices to take σ ∈ O( k

τ
√
m
).

• We previously showed the Gaussian mechanism with parameter σ is 1√
2πmσ

-TV stable

• We just finished showing that TV-stable algorithms compose. So the interaction A◦M
is k√

2πmσ
-TV stable

• We previously showed that TV-stable algorithms have small expected generalization
error

Specifically, we showed that for all distributions D, letting qS ← A◦M(S) where A◦M
is an ε-TV stable algorithm, that except with probability at most δ over S ∼ Dm

|E
r
[qS(S)− qS(D)]| ≤ ε+ (2εm+ 1)

√
log 2/δ

m
.

Plugging in k√
2πmσ

for ε, and assuming σ < 1 (which it better be if we want our statistical

queries to not be totally drowned out by noise), we have
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So if we want generalization error no greater than τ , it suffices to take

σ ∈ O

(
k
√
log 1/δ√
mτ

)
.

Note that if we want σ ∈ o(1), we need to take

m ∈ ω

(
k2
√
log(1/δ)

τ 2

)
But using the composition theorem for differential privacy, the picture looks a little

different.

• We can show that the Laplace mechanism with parameter ε is (ε, 0)-DP

• We claimed that DP algorithms compose. So the interaction A◦M is (ϵ
√

2k ln 1/δ′+
kε(eε − 1), δ′)-DP for all δ

• We showed that (ε, 0)-DP algorithms are TV-stable,

dTV ≤ 1
2
(eε − 1) + δ

so we can show that A ◦M is TV-stable:

dTV (A ◦M(S),A ◦M(S ′)) ≤ 1
2
(eϵ
√

2k ln 1/δ′+kε(eε−1) − 1) + δ′
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2
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2
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Plugging O(ε
√
k) in for α in our expected generalization guarantees:

|E
r
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√
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√
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√
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∈ Õ(ε
√
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So if I want expected generalization error smaller than τ , I need ε ∈ Õ( τ√
km

).


