EN.601.774 Theory of Replicable ML

Spring 2025

Lecture 15

Instructor: Jess Sorrell

Scribe: Jess Sorrell

Acknowledgements. Much of this material is lifted wholesale from the course notes of Aaron Roth and Adam Smith, available at

https://www.adaptivedataanalysis.com

Domain $\mathcal{X} = \{0, 1\}^d, \, \mathcal{Y} = \{0, 1\}.$

Theorem 0.1. Let $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k)$ be the sequential adaptive composition of k mechanisms, each of which is ε -TV stable. Then for any algorithm \mathcal{A} that is a post-processing of \mathcal{M}_i 's, the interaction $\mathcal{A} \circ \mathcal{M}$ is $k\varepsilon$ -TV stable.

Proof. Now that we've decomposed the interaction between \mathcal{A} and \mathcal{M} into k exchanges between \mathcal{A}_i and \mathcal{M}_i , note that if \mathcal{M}_i is ε -TV stable, then $\mathcal{A}_{i+1} \circ \mathcal{M}_i$ is also ε -TV stable by the post-processing result we showed previously. \mathcal{A}_{i+1} only takes the outputs of \mathcal{M}_i as input (the answer a_i and the state $state_i$), so it is simply a post-processing of a stable algorithm. So for notational simplicity, we can let \mathcal{M}_i "absorb" \mathcal{A}_{i+1} , so now \mathcal{M}_i takes as input

- Dataset S
- A query ϕ_i
- Global $state_{i-1}$ (we need to add this state input to model the memory of the interaction between \mathcal{A} and \mathcal{M})

and outputs

- A new query ϕ_{i+1}
- Updated global $state_i$

Let $Y = \mathcal{M}(S)$ be the random variable denoting the sequence of outputs of \mathcal{M} on dataset S when it is interacting with a fixed \mathcal{A} . Let \mathcal{O}^k be the outcome space that Y is distributed over. Y can also be written as a joint distribution $Y = (Y_1, Y_2, \ldots, Y_k)$, where $Y_i = \mathcal{M}_i(S, Y_1, Y_2, \ldots, Y_{i-1})$. We will similarly write $Z = \mathcal{M}(S')$, and $Z = (Z_1, Z_2, \ldots, Z_k)$ for $Z_i = \mathcal{M}_i(S', Z_1, Z_2, \ldots, Z_k)$.

To show that \mathcal{M} is $k\varepsilon$ -TV stable, it would suffice to show that $d_{TV}(Y_k, Z_k) \leq k\varepsilon$. We will show something somewhat stronger, which is

$$d_{TV}(Y,Z) \le k\varepsilon.$$

Let $Y_1^i = (Y_1, Y_2, \ldots, Y_i)$ and similarly $Z_1^i = (Z_1, Z_2, \ldots, Z_i)$. We will argue inductively, showing

Base case: $d_{TV}(Y_1, Z_1) \leq \varepsilon$ Inductive step: $d_{TV}(Y_1^{i+1}, Z_1^{i+1}) \leq d_{TV}(Y_1^i, Z_1^i) + \varepsilon$.

To argue the base case, we just need the stability of \mathcal{M}_1 . It follows immediately that

$$d_{TV}(Y_1, Z_1) = d_{TV}(\mathcal{M}_1(S), \mathcal{M}_1(S')) \le \varepsilon.$$

We now turn to arguing the inductive step. Let $o_1^i = (o_1, o_2, \ldots, o_i)$ and let $Y_1^{i+1}(o_1^{i+1}) = \Pr[Y_1^{i+1} = o_1^{i+1}]$. We want to bound

$$d_{TV}(Y_1^{i+1}, Z_1^{i+1}) = \frac{1}{2} \int_{o \in \mathcal{O}^{i+1}} |Y_1^{i+1}(o) - Z_1^{i+1}(o)| do$$

= $\frac{1}{2} \int_{o_1^i \in \mathcal{O}^i} \int_{o \in \mathcal{O}} |Y_1^{i+1}(o, o_1^i) - Z_1^{i+1}(o, o_1^i)| do do_1^i$

Observe that for all $o = (o_1, \ldots, o_{i+1}) \in \mathcal{O}^{i+1}$,

$$Y_1^{i+1}(o_{i+1}, o_1^i) = Y_{i+1}(o_{i+1} \mid o_1^i) \cdot Y_1^i(o_1^i)$$

So for all $o \in \mathcal{O}$,

$$\begin{split} Y_1^{i+1}(o, o_1^i) - Z_1^{i+1}(o, o_1^i) &= Y_{i+1}(o \mid o_1^i) \cdot Y_1^i(o_1^i) - Z_{i+1}(o \mid o_1^i) \cdot Z_1^i(o_1^i) \\ &= Y_{i+1}(o \mid o_1^i) \cdot Y_1^i(o_1^i) - Z_{i+1}(o \mid o_1^i) \cdot Z_1^i(o_1^i) \\ &+ Z_{i+1}(o \mid o_1^i) \cdot Y_1^i(o_1^i) - Z_{i+1}(o \mid o_1^i) \cdot Y_1^i(o_1^i) \\ &= Y_1^i(o_1^i)(Y_{i+1}(o \mid o_1^i) - Z_{i+1}(o \mid o_1^i)) + Z_{i+1}(o \mid o_1^i)(Y_1^i(o_1^i) - Z_1^i(o_1^i)) \end{split}$$

Inserting the above into our expression for $d_{TV}(Y_1^{i+1}, Z_1^{i+1})$, we obtain

$$\begin{split} d_{TV}(Y_1^{i+1}, Z_1^{i+1}) &= \frac{1}{2} \int_{o_1^i \in \mathcal{O}^i} \int_{o \in \mathcal{O}} |Y_1^{i+1}(o, o_1^i) - Z_1^{i+1}(o, o_1^i)| do \ do_1^i \\ &= \frac{1}{2} \int \int |Y_1^i(o_1^i)(Y_{i+1}(o \mid o_1^i) - Z_{i+1}(o \mid o_1^i)) + Z_{i+1}(o \mid o_1^i)(Y_1^i(o_1^i) - Z_1^i(o_1^i))| do \ do_1^i \\ &\leq \frac{1}{2} \int \int Y_1^i(o_1^i)|Y_{i+1}(o \mid o_1^i) - Z_{i+1}(o \mid o_1^i)| + \frac{1}{2} \int \int Z_{i+1}(o \mid o_1^i)|Y_1^i(o_1^i) - Z_1^i(o_1^i)| do \ do_1^i \\ &= \sum_{o_1^i \sim Y_1^i} [d_{TV}(Y_{i+1}, Z_{i+1}) \mid Y_1^i = o_1^i] + \frac{1}{2} \int_{o_1^i \in \mathcal{O}^i} |Y_1^i(o_1^i) - Z_1^i(o_1^i)| do_1^i \\ &\leq \varepsilon + d_{TV}(Y_1^i, Z_1^i) \end{split}$$

It follows that

$$d_{TV}(\mathcal{M}(S), \mathcal{M}(S')) = d_{TV}(Y, Z) = d_{TV}(Y_1^k, Z_1^k) = k\varepsilon$$

Adaptive composition for DP algorithms

Definition 0.2 (Approximate Differential Privacy). A randomized algorithm $\mathcal{M} : \mathcal{Z}^m \to \mathcal{O}$ is (ε, δ) -DP if for all measurable subsets $T \subset \mathcal{O}$ and neighboring datasets S, S':

$$\Pr[\mathcal{M}(S) \in T] \le e^{\varepsilon} \Pr[\mathcal{M}(S') \in T] + \delta$$

Note that for $(\varepsilon, 0)$ -DP algorithms, this is equivalent to the statement

$$\ln\left(\frac{\Pr[\mathcal{M}(S)\in O]}{\Pr[\mathcal{M}(S')\in O]}\right) \leq \varepsilon$$

Theorem 0.3. For all $\varepsilon \ge 0$ and $\delta' > 0$, the adaptive composition of k algorithms, each of which is ε -DP, is $(\epsilon \sqrt{2k \ln 1/\delta'} + k\varepsilon(e^{\varepsilon} - 1), \delta')$ -DP.

Putting it all together

Let \mathcal{A} be a statistical query algorithm that makes k queries to \mathcal{M} , all of which are answered by the Gaussian mechanism. Then to ensure expected generalization error at most τ for $\mathcal{A} \circ \mathcal{M}$, it suffices to take $\sigma \in O(\frac{k}{\tau\sqrt{m}})$.

- We previously showed the Gaussian mechanism with parameter σ is $\frac{1}{\sqrt{2\pi m\sigma}}$ -TV stable
- We just finished showing that TV-stable algorithms compose. So the interaction $\mathcal{A} \circ \mathcal{M}$ is $\frac{k}{\sqrt{2\pi m\sigma}}$ -TV stable
- We previously showed that TV-stable algorithms have small expected generalization error

Specifically, we showed that for all distributions D, letting $q_S \leftarrow \mathcal{A} \circ \mathcal{M}(S)$ where $\mathcal{A} \circ \mathcal{M}$ is an ε -TV stable algorithm, that except with probability at most δ over $S \sim D^m$

$$\left| \mathop{\mathbb{E}}_{r} [q_{S}(S) - q_{S}(D)] \right| \leq \varepsilon + (2\varepsilon m + 1) \sqrt{\frac{\log 2/\delta}{m}}.$$

Plugging in $\frac{k}{\sqrt{2\pi m\sigma}}$ for ε , and assuming $\sigma < 1$ (which it better be if we want our statistical queries to not be totally drowned out by noise), we have

$$|\mathbb{E}_{r}[q_{S}(S) - q_{S}(D)]| \leq \frac{k}{\sqrt{2\pi}m\sigma} + (\frac{2k}{\sqrt{2\pi}\sigma} + 1)\sqrt{\frac{\log 2/\delta}{m}}$$
$$\leq \frac{k}{\sqrt{2\pi}m\sigma} + \frac{3k}{\sqrt{2\pi}\sigma}\sqrt{\frac{\log 2/\delta}{m}}$$
$$= \frac{k}{\sqrt{2\pi}m\sigma} + \frac{3k\sqrt{\log 2/\delta}}{\sqrt{2\pi}m\sigma}$$
$$\in O\left(\frac{k\sqrt{\log 1/\delta}}{\sqrt{m}\sigma}\right)$$

So if we want generalization error no greater than τ , it suffices to take

$$\sigma \in O\left(\frac{k\sqrt{\log 1/\delta}}{\sqrt{m\tau}}\right).$$

Note that if we want $\sigma \in o(1)$, we need to take

$$m \in \omega\left(\frac{k^2\sqrt{\log(1/\delta)}}{\tau^2}\right)$$

But using the composition theorem for differential privacy, the picture looks a little different.

- We can show that the Laplace mechanism with parameter ε is $(\varepsilon, 0)$ -DP
- We claimed that DP algorithms compose. So the interaction $\mathcal{A} \circ \mathcal{M}$ is $(\epsilon \sqrt{2k \ln 1/\delta'} +$ $k\varepsilon(e^{\varepsilon}-1), \delta')$ -DP for all δ
- We showed that $(\varepsilon, 0)$ -DP algorithms are TV-stable,

$$d_{TV} \le \frac{1}{2}(e^{\varepsilon} - 1) + \delta$$

so we can show that $\mathcal{A} \circ \mathcal{M}$ is TV-stable:

$$d_{TV}(\mathcal{A} \circ \mathcal{M}(S), \mathcal{A} \circ \mathcal{M}(S')) \leq \frac{1}{2} (e^{\epsilon \sqrt{2k \ln 1/\delta'} + k\varepsilon(e^{\varepsilon} - 1)} - 1) + \delta'$$

$$\leq \frac{1}{2} (e^{\epsilon \sqrt{2k \ln 1/\delta'} + k\varepsilon^2} - 1) + \delta' \qquad \text{if } \varepsilon < 1 \text{ from } e^{\varepsilon} \approx 1 + \varepsilon$$

$$\leq \frac{1}{2} (e^{2\epsilon \sqrt{2k \ln 1/\delta'}} - 1) + \delta' \qquad \text{if } \varepsilon < \frac{1}{\sqrt{k}}$$

$$\leq \frac{1}{2} (2\epsilon \sqrt{2k \ln 1/\delta'} - 1) + \delta' \qquad \text{if } \varepsilon < \frac{1}{\sqrt{2k \ln 1/\delta'}}$$

$$= \epsilon \sqrt{2k \ln 1/\delta'} + \delta' \qquad \text{if } \varepsilon < \frac{1}{2\sqrt{2k \ln 1/\delta'}}$$

$$\in \tilde{O}(\varepsilon\sqrt{k}) \qquad \text{take } \delta' = \varepsilon\sqrt{k} \text{ and ignore log factors}$$

take $\delta' = \varepsilon \sqrt{k}$ and ignore log factors

Plugging $O(\varepsilon\sqrt{k})$ in for α in our expected generalization guarantees:

$$\begin{aligned} |\mathbb{E}_{r}[q_{S}(S) - q_{S}(D)]| &\leq \tau + (2\alpha m + 1)\sqrt{\frac{\log 2/\beta}{m}} \\ &\leq \varepsilon\sqrt{k} + (2\varepsilon\sqrt{k}m + 1)\sqrt{\frac{\log 2/\beta}{m}} \\ &\leq \varepsilon\sqrt{k} + 3\varepsilon\sqrt{k}m\sqrt{\frac{\log 2/\beta}{m}} \\ &\leq \varepsilon\sqrt{k} + 3\varepsilon\sqrt{k}m\log 2/\beta} \\ &\in \tilde{O}(\varepsilon\sqrt{km}) \end{aligned}$$

So if I want expected generalization error smaller than τ , I need $\varepsilon \in \tilde{O}(\frac{\tau}{\sqrt{km}})$.