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Theorem 0.1. Let M = (M, M,, ..., My) be the sequential adaptive composition of k
mechanisms, each of which is e-TV stable. Then for any algorithm A that is a post-processing
of M;’s, the interaction Ao M is ke-TV stable.

Proof. Now that we’ve decomposed the interaction between A and M into k exchanges
between A; and M;, note that if M, is e-TV stable, then A;,; o M, is also e-TV stable by
the post-processing result we showed previously. A; 1 only takes the outputs of M; as input
(the answer a; and the state state;), so it is simply a post-processing of a stable algorithm.
So for notational simplicity, we can let M; “absorb” A;,1, so now M; takes as input

e Dataset S
e A query ¢;

e Global state; 1 (we need to add this state input to model the memory of the interaction
between A and M)

and outputs
e A new query ¢;q
e Updated global state;

Let Y = M(S) be the random variable denoting the sequence of outputs of M on
dataset S when it is interacting with a fixed A. Let O be the outcome space that Y is
distributed over. Y can also be written as a joint distribution Y = (Y7, Y5,...,Ys), where
Y = M;(S,Y1,Ys,...,Y;1). We will similarly write Z = M(S"), and Z = (2, Za, ..., Z)
for Zz = Mi(S/, Zl, ZQ, ceey Zk>

To show that M is ke-TV stable, it would suffice to show that dpy (Y, Zx) < ke. We
will show something somewhat stronger, which is

dTv(Y, Z) S ke.



Let Y = (Y1,Y5,...,Y;) and similarly Z! = (2, Z,, ..., Z;). We will argue inductively,
showing

Base case: dry(Y1,71) <¢

Inductive step: dry (Y, ZiTY) < dpy (YP, Z8) + e

To argue the base case, we just need the stability of M;. It follows immediately that

drv (Y1, Z1) = dpy (M4(S), M1(S")) < e.

We now turn to arguing the inductive step. Let o} = (01, 09, . ..
Y (o) = Pr[Y{ ™ = 0"']. We want to bound

,0;) and let
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Observe that for all 0 = (0y,...,0;:1) € O
Y (0i11,01) = Yig1(0ip1 | 0f) - Yi(0)).
So for all 0 € O,

Yt (0,01) = 2" (0,01) = Yisa(o | 01) - Y{(0}) = Zisa(o | 0}) - Z3(0})
=Yin(o] 0y) - Y{(01) = Ziza(o| 0}) - Zi(0})
+ Zia(o | 0}) - Y{(01) = Zisa(o | 0}) - Yi(0})
=Y/ (01)(Yisa(o | 01) = Zisa(0] 01)) + Zisa(o | 01)(Y{(0}) — Zi(01))

Inserting the above into our expression for dry (Y, Zit1), we obtain
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<1 / / ()i (0| 0}) = Ziss(o | o) + 1 / / Zior(o| 0)|Yi(oh) — Zi(o})|do dof
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<e+drv(Y, Z})
It follows that
dry (M(S), M(S") = drv (Y, Z) = drv (Y, Z}) = ke



Adaptive composition for DP algorithms

Definition 0.2 (Approximate Differential Privacy). A randomized algorithm M : Z™ — O
is (&,0)-DP if for all measurable subsets 7' C O and neighboring datasets S, S":

Pr[M(S) e T] < e PrM(S) e T|+4
Note that for (e,0)-DP algorithms, this is equivalent to the statement

PrM(S) € O]
n <Prw<s'> c 01) =e

Theorem 0.3. For all ¢ > 0 and 0’ > 0, the adaptive composition of k algorithms, each of
which is e-DP, is (er/2kIn1/§ + ke(e® — 1),0")-DP.

Putting it all together

Let A be a statistical query algorithm that makes k& queries to M, all of which are answered
by the Gaussian mechanism. Then to ensure expected generalization error at most 7 for
Ao M, it suffices to take o € O(#m)

e We previously showed the Gaussian mechanism with parameter o is m—Tv stable

e We just finished showing that TV-stable algorithms compose. So the interaction AoM

is \/ﬁma—TV stable

e We previously showed that TV-stable algorithms have small expected generalization
error

Specifically, we showed that for all distributions D, letting gs < Ao M(S) where Ao M
is an e-TV stable algorithm, that except with probability at most § over S ~ D™

HEZ[QS(S) —qs(D)]| < e+ (2em + 1)4/ %.
k

Plugging in Torme for £, and assuming o < 1 (which it better be if we want our statistical
queries to not be totally drowned out by noise), we have

IElgs(S) — gs(D)]| < —m— + (25 4 1y 1ets
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So if we want generalization error no greater than 7, it suffices to take
k+/log1/§
ce0 | ——.
mt
Note that if we want o € o(1), we need to take

e <k2 log(1/5)>

T2

But using the composition theorem for differential privacy, the picture looks a little
different.

e We can show that the Laplace mechanism with parameter ¢ is (¢,0)-DP

e We claimed that DP algorithms compose. So the interaction Ao M is (e/2kIn1/0" +
ke(e® —1),6")-DP for all ¢

e We showed that (g,0)-DP algorithms are T'V-stable,
dTV S %(68 — 1) +5

so we can show that A o M is TV-stable:

dry (Ao M(S), Ao M(S")) < %(eew/%lnl/é’—i-ka(es_l) SN
< %(ee\/mMe(eul) )4
z%(ee\/m”‘wz—l)—l—é’ ife<1lfrome®*~1+¢
< L(2VHmUY )y ife <2
< 1(2ey/2kIn1/¥) + ¢ if e < W

— / / ; 1
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e O(eVk) take &' = eV'k and ignore log factors

Plugging O(svk) in for « in our expected generalization guarantees:
|IE«[QS(S) —qs(D)]] <7+ (2am + 1)\/@
< eV + (2eVEkm + 1)\/@
< eVk + 3eVkma [ 2828

m
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So if I want expected generalization error smaller than 7, I need ¢ € O( ).
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