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Last time, we showed how to extend our “in expectation” generalization guarantees for
a single TV-stable or (ϵ, δ)-private mechanism to “in expectation” generalization guarantees
for the adaptive sequential composition of k such mechanisms. We showed that answering

queries using the Laplace mechanism with noise rate ε ∈ Õ
(

τ√
km

)
would the guarantee us

expected generalization error O(τ).
Over the next few lectures, we’ll build on and strengthen these results in two ways:

1. We’ll show high probability generalization bounds for (ε, δ)-DP algorithms

2. We’ll show that the noise rate required by stable mechanisms to obtain those high
probability generalization bounds are not so large that the generalization guarantees
are vacuous

We’ll start with the high probability generalization bounds. Recall that we tried to
get high probability guarantees for TV-stability the same way we got them for UCO sta-
bility. We ran into challenges with applying McDiarmid’s inequality, however, because we
only had stability guarantees for the expected generalization error Er[qS;r(S)− qS;r(D)], not
qS;r(S)− qS;r(D).

To get high probability guarantees, we’re going to follow a different proof approach: proof
by contradiction. Suppose there was an (ε, δ)-DP mechanism M that did overfit its data
with probability p (over the choice of sample and choice of internal randomness). We’ll
design a new mechanism MB that “monitors” roughly T ≈ 1/p independent runs of M on
independent datasets and outputs the result with the worst generalization error. We’ll design
the monitor MB to also be differentially private, and show that it must overfit its data with
constant probability. This will contradict the “in expectation” generalization guarantees
we’ve already proved.

Today we’ll build up some of the machinery we’ll need to construct the monitor MB.
This monitor will need to privately select the worst query output by several runs on M,
or something comparably bad. We’ll show how to do this privately via the exponential
mechanism.

The exponential mechanism takes as input

• A dataset S ∈ Xm

• A set of candidate outputs Y

• A score function f : Y × Xm → R which scores how good each candidate output is
with respect to dataset S



• A sensitivity bound δ for f on neighboring datasets that is worst-case over y ∈ Y .
That is, it must hold that

sup
y∈Y

sup
S,S′∈Xm

|f(y, S)− f(y, S ′)| ≤ ∆

• Privacy parameter ϵ

Algorithm 1 Exponential Mechanism E(S,Y , f,∆, ε)

1: Define distribution DY (y) ∝ e
ε
2∆

f(y,S)

2: return y ∼ DY

This is somewhat underspecified, as algorithms go. How do we sample from DY ? How do

we actually define DY ? Note that, so long as there exists a measure such that
∫
y∈Y e

ε
2∆

f(y,S)dy
is finite, we’re all set! Then we can set

DY (y) =
e

ε
2∆

f(y,S)∫
y′∈Y e

ε
2∆

f(y′,S)dy′

and we have a well-defined distribution. Sampling from it might still be a challenge though.
Let’s imagine the case where Y is finite. Then our normalization factor is∑

y∈Y

e
ε
2∆

f(y,S)

and we can use the following rejection sampling procedure to sample from DY .

Algorithm 2 Rejection Sampler Samp(S,Y , f,∆, ε)

1: while True do
2: Select an element y ∼ Unif(Y) uniformly at random

3: Compute DY (y) =
e

ε
2∆

f(y,S)∑
y′∈Y e

ε
2∆

f(y′,S)

4: Sample a threshold t ∼ Unif([0, 1])
5: if DY (y) ≥ t then
6: return y
7: end if
8: end while

Theorem 0.1. [McSherry and Talwar, 2007] The exponential mechanism E is (ϵ, 0)-DP.



Proof. Let’s continue under the assumption that Y is finite. For any y ∈ Y ,

e
ε
2∆

f(y,S)

e
ε
2∆

f(y,S′)
= e

ε
2∆

(f(y,S)−f(y,S′))

≤ e
ε∆
2∆

= e
ε
2

Now we’ll need an analogous bound for the normalization factors.∑
y′∈Y e

ε
2∆

f(y′,S′)∑
y′∈Y e

ε
2∆

f(y′,S)
≤

∑
y′∈Y e

ε
2∆

(f(y′,S)+∆)∑
y′∈Y e

ε
2∆

f(y′,S)

= e
ε∆
2∆

∑
y′∈Y e

ε
2∆

f(y′,S)∑
y′∈Y e

ε
2∆

f(y′,S)

= e
ε
2

We can now put it all together:

Pr[E(S,Y , f,∆, ε) = y]

Pr[E(S ′,Y , f,∆, ε) = y]
=

e
ε
2∆

f(y,S)∑
y′∈Y e

ε
2∆

f(y′,S)

∑
y′∈Y e

ε
2∆

f(y′,S′)

e
ε
2∆

f(y,S′)

≤ e
ε
2 e

ε
2

= eε

It follows that for all y ∈ Y

Pr[E(S,Y , f,∆, ε) = y] ≤ eε Pr[E(S ′,Y , f,∆, ε) = y].

Theorem 0.2. Let OPT (S) = maxy∈Y f(y, S) be the largest score obtainable by any output
y ∈ Y. Let Y∗ = {y ∈ Y : f(y, S) = OPT (S)}. Then

Pr[f(E(S,Y , f,∆, ε) ≤ OPT (S)− 2∆

ε

(
ln |Y|

|Y∗| + t
)
] ≤ e−t



Proof.

Pr[f(E(S,Y , f,∆, ε) ≤ c] =

∑
y′∈Y:f(y′,S)≤c e

ε
2∆

f(y′,S)∑
y′∈Y e

ε
2∆

f(y′,S)

≤ |Y|e
εc
2∆∑

y′∈Y e
ε
2∆

f(y′,S)

≤ |Y|e
εc
2∆

|Y∗|e
εOPT
2∆

=
|Y|
|Y∗|

e
ε
2∆

(c−OPT )

Plugging in c = OPT (S)− 2∆
ε

(
ln |Y|

|Y∗| + t
)
, we get

Pr[f(E(S,Y , f,∆, ε) ≤ c] ≤ |Y|
|Y∗|

e
ε
2∆

(− 2∆
ε
(ln

|Y|
|Y∗|+t))

=
|Y|
|Y∗|

e
−(ln

|Y|
|Y∗|+t)

= e−t

The exponential mechanism can also be used to privately learn finite hypothesis classes!

Algorithm 3 Private Learner L(S,H, ε)

1: f(h, S) = − 1
|S|

∑
(x,y)∈S 1[h(x) ̸= y]

2: ∆ = 1
|S|

3: return E(S,H, f,∆, ε)

Theorem 0.3. [Kasiviswanathan et al., 2011] Let H be a finite hypothesis class. There
exists an (ϵ, 0)-DP PAC learner for H with sample complexity

m ∈ O

(
log(|H|/β)

α2
+

log(|H|/β)
αε

)
where α is the target error and β is the target failure rate.

Proof. We’ve already showed that the exponential mechanism is private, but we need to
show that it finds a good hypothesis to return.



The score is just the empirical error. Note that we’ve chosen our sample to be large
enough such that except with probability δ

−f(h, S) = 1
|S|

∑
(x,y)∈S

1[h(x) ̸= y] ≤ Pr
(x,y)∼D

[h(x) ̸= y] + α/2

for all hypotheses
So as long as we return a hypothesis with score at least OPT − α

2
with probability at

least β/2, we’ll have a hypothesis that is within α of optimal error.
We just showed that

Pr[f(E(S,Y , f,∆, ε) ≤ OPT (S)− 2∆

ε

(
ln |Y|

|Y∗| + t
)
] ≤ e−t.

We need e−t < β/2, so putting this together with the accuracy requirement, we want

OPT (S)−2∆

ε

(
ln |H|

|H∗| + ln 2
β

)
≥ OPT (S)− α/2

⇒ ∆
(
ln |H|

|H∗| + ln 2
β

)
≤ αε

4

⇒ ∆ ≤ αε

4
(
ln |H|

|H∗| + ln 2
β

)
⇒ ∆ ≤ αε

4
(
ln |H|+ ln 2

β

)
⇒ |S| ≥

4(ln |H|+ ln 2
β
)

αε
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