EN.601.774 Theory of Replicable ML

Spring 2025

Lecture 17

Instructor: Jess Sorrell

```
Scribe: Jess Sorrell
```

Algorithm 1 Exponential Mechanism $\mathcal{E}(S, \mathcal{Y}, f, \Delta, \varepsilon)$

1: Define distribution $D_Y(y) \propto e^{\frac{\varepsilon}{2\Delta}f(y,S)}$

2: return $y \sim D_Y$

Theorem 0.1. Let $f : \mathcal{Y} \times S \to \mathbb{R}$ be the score function given as input to \mathcal{E} . Let $OPT(S) = \max_{y \in \mathcal{Y}} f(y, S)$ be the largest score obtainable by any output $y \in \mathcal{Y}$. Then except with probability β ,

$$f(\mathcal{E}(S, \mathcal{Y}, f, \Delta, \varepsilon), S) > OPT(S) - \frac{2\Delta}{\varepsilon} \left(\ln |\mathcal{Y}| + \log(1/\beta) \right)$$

Theorem 0.2. Bassily et al. [2016] Let $\varepsilon \in [\sqrt{\frac{12}{n}}, \frac{1}{8}]$ and $\delta \leq \frac{\varepsilon}{16}$. Let $\mathcal{M} : \mathcal{X}^m \to \mathcal{Q}$ be an (ε, δ) -private algorithm, where \mathcal{Q} is the class of all queries such that $|q(S) - q(S')| \leq \frac{1}{m}$ for |S| = m. Then for any distribution D on \mathcal{X} :

$$\Pr_{S \sim D^m q \leftarrow \mathcal{M}(S)}[|q(S) - q(D)| \ge 6\varepsilon] \le \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$$

Algorithm 2 Monitor($\{S_t\}_{t=1}^T$) Parameters: Number of datasets TPrivacy parameters $\varepsilon, \varepsilon', \delta$ (ε, δ) -DP Mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Q}$ Distribution D on \mathcal{X} 1: $Y = \emptyset$ 2: for $t \in [T]$ do $q_t \leftarrow \mathcal{M}(S_t)$ 3: $q_{-t}(x) = 1 - q_t$ 4: $Y = Y \cup \{(t, q_t), (t, q_{-t})\}$ 5: 6: end for 7: define score $f: Y \to \mathbb{R}, f((t,q),S) = q(S_t) - q(D)$ 8: $\Delta = \frac{1}{|S_1|}$ 9: $(t^*, q^*) \leftarrow \mathcal{E}(S, Y, f, \Delta, \varepsilon')$ 10: return (t^*, q^*)

Proof Plan

- 1. Show Monitor is $(\varepsilon + \varepsilon', \delta)$ -DP
- 2. Lower bound the expected generalization error of the query output by the monitor as a function of how often \mathcal{M} overfits its data by more than 6ε
- 3. Upper bound the expected generalization error of the query output by the monitor using a (modified) version of results we've seen already (stability \Rightarrow expected generalization guarantees)
- 4. Use the upper bound on generalization error to show that the probability of overfitting by more than 6ε must be small, obtaining high probability generalization guarantees!

Claim 0.3. Let \mathcal{M} be an (ε, δ) -DP algorithm. Then the Monitor algorithm run with \mathcal{M} is $(\varepsilon + \varepsilon', \delta)$ -DP.

Proof. Let $\mathcal{M}_Y(\{S_t\}_{t=1}^T)$ be as in Algorithm 3. Then \mathcal{M}_Y is (ε, δ) -DP. This follows from the fact that for neighboring S, S', there is only a single value of t such that $S_t \neq S'_t$, and therefore there is only a single t such that $\{(t, q_t), (t, q_{-t})\}$ is not identically distributed to $\{(t, q'_t), (t, q'_{-t})\}$. Let $Y = (y_1, y_2, \ldots, y_T)$ and let t^* denote the value of t^* such that $S_{t^*} \neq S'_{t^*}$. Then we have

$$\begin{aligned} \Pr[\mathcal{M}_{Y}(S) = Y] &= \Pr[\mathcal{M}(S_{1}) = y_{1}] \dots \Pr[\mathcal{M}(S_{t^{*}}) = y_{t^{*}}] \dots \Pr[\mathcal{M}(S_{T}) = y_{T}] \\ &= \Pr[\mathcal{M}(S'_{1}) = y_{1}] \dots \Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}] \dots \Pr[\mathcal{M}(S'_{T}) = y_{T}] \cdot \frac{\Pr[\mathcal{M}(S_{t^{*}}) = y_{t^{*}}]}{\Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}]} \\ &= \Pr[\mathcal{M}_{Y}(S') = Y] \cdot \frac{\Pr[\mathcal{M}(S_{t^{*}}) = y_{t^{*}}]}{\Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}]} \\ &\leq \Pr[\mathcal{M}_{Y}(S') = Y] \cdot \frac{e^{\varepsilon} \Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}] + \delta}{\Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}]} \\ &= e^{\varepsilon} \Pr[\mathcal{M}_{Y}(S') = Y] + \frac{\delta \Pr[\mathcal{M}_{Y}(S') = Y]}{\Pr[\mathcal{M}(S'_{t^{*}}) = y_{t^{*}}]} \\ &\leq e^{\varepsilon} \Pr[\mathcal{M}_{Y}(S') = Y] + \delta \end{aligned}$$

Note that the Y given to \mathcal{E} as input in the Monitor algorithm is just a postprocessing of \mathcal{M}_Y , as is therefore also (ε, δ) -DP. Recall that the exponential mechanism run with privacy parameter ε is ε -DP. Then the composition of \mathcal{E} with the post-processed output of \mathcal{M}_Y is $(\varepsilon + \varepsilon', \delta)$ -DP.

Algorithm 3 $\mathcal{M}_Y(\{S_t\}_{t=1}^T)$ Parameters: Number of datasets TPrivacy parameters $\varepsilon, \varepsilon'$ Mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Q}$ Distribution D on \mathcal{X} 1: $\mathcal{Y} = \emptyset$ 2: for $t \in [T]$ do3: $q_t \leftarrow \mathcal{M}(S_t)$ 4: $Y = Y \cup \{(t, q_t)\}$ 5: end for6: return Y

Claim 0.4. Let

$$p_{\alpha} = \Pr_{\substack{S \sim D^m \\ q \leftarrow \mathcal{M}(S)}} [q(S) - q(D) \ge \alpha].$$

Let $S_{max} = \max_{(t,q) \in Y} f((t,q), S)$. Then

$$\mathop{\mathbb{E}}_{\substack{S \sim (D^m)^T \\ Monitor(S)}} [S_{max}] \ge \alpha (1 - (1 - p_\alpha)^T).$$

Proof. The probability that there exists some $t \in [T]$ such that $q_t(S_t) - q_t(D) \ge \alpha$ is $1 - (1 - p_\alpha)^T$. Furthermore $S_{max} \ge 0$ always, because we include both q and 1 - q in Y. Therefore

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ Monitor(S)}} [S_{max}] \ge \alpha (1 - (1 - p_\alpha)^T) + 0 \cdot (1 - p_\alpha)^T$$

Lemma 0.5. For every $\varepsilon > 0, \delta > 0, T \in \mathbb{N}$, and distribution D on \mathcal{X} : If the algorithm Monitor: $(\mathcal{X}^m)^T \to [T] \times \mathcal{Q}$ is (ε, δ) -DP and $S = (S_1, \ldots, S_T) \sim (D^m)^T$, then

$$\underset{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}}{\mathbb{E}} \left[q(S_t) - q(D) \right] \le (e^{\varepsilon} - 1) + T\delta$$

(For the remainder of the analysis, we'll make the simplifying assumption that \mathcal{E} always returns an output with nearly optimal score, rather than "except with probability β).

For the Monitor algorithm, we have $\Delta = \frac{1}{m}$, so we know that the exponential mechanism,

and therefore the Monitor algorithm, will return a pair (t, q) such that

$$f(\mathcal{E}(S, Y, f, \Delta, \varepsilon), S) > S_{max} - \frac{2 \ln T}{\varepsilon m}$$

$$\Rightarrow q(S_t) - q(D) > S_{max} - \frac{2 \ln T}{\varepsilon m}$$

$$\Rightarrow \underset{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}}{\mathbb{E}} [q(S_t) - q(D)] > \alpha (1 - (1 - p_\alpha)^T) - \frac{2 \log T}{\varepsilon m}$$

We also have from Lemma 0.5 that

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] \le \mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] \le (e^{\varepsilon + \varepsilon'} - 1) + T\delta$$

It follows that

$$\alpha(1 - (1 - p_{\alpha})^{T}) - \frac{2\log T}{\varepsilon m} \le (e^{\varepsilon + \varepsilon'} - 1) + T\delta$$

Take $\varepsilon' = \varepsilon$ and $T = \lfloor 1/p_{\alpha} \rfloor$, so that $1 - p_{\alpha} \le p_{\alpha}T$ and note that for any $p_{\alpha} \le 1/4$ we have

$$(1 - p_{\alpha})^T \le e^{-p_{\alpha}T} \le e^{-1 + p_{\alpha}} \le 1/2.$$

Then

$$\begin{aligned} \alpha(1 - (1 - p_{\alpha})^{T}) &\geq \frac{\alpha}{2} \\ \Rightarrow \frac{\alpha}{2} - \frac{2\ln T}{\varepsilon m} \leq (e^{2\varepsilon} - 1) + T\delta \\ \Rightarrow \alpha - 2(e^{2\varepsilon} - 1) \leq \frac{4\ln T}{\varepsilon m} + 2T\delta \\ &\leq \frac{4\ln \frac{1}{p_{\alpha}}}{\varepsilon m} + \frac{2\delta}{p_{\alpha}} \end{aligned}$$

We want to show that $p_{\alpha} \leq \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$ for $\alpha = 6\varepsilon$, and $\varepsilon \leq 1/8$. Recalling the fun math fact $e^{2x} \leq 1 + 2x + 4x^2$ when $x \leq 1/2$, it follows that $e^{2\varepsilon} - 1 \leq 2\varepsilon + 4\varepsilon^2$. Then

$$\alpha - 2(e^{2\varepsilon} - 1) \ge 6\varepsilon - 4\varepsilon - 8\varepsilon^2 \ge 2\varepsilon - \varepsilon = \varepsilon$$
$$\Rightarrow \varepsilon \le \frac{4\ln\frac{1}{p_\alpha}}{\varepsilon m} + \frac{2\delta}{p_\alpha}$$

For this to be true, at least one of $\frac{4 \ln \frac{1}{p_{\alpha}}}{\varepsilon m}$ or $\frac{2\delta}{p_{\alpha}}$ must be at least than $\varepsilon/2$. So

- either $\frac{2\delta}{p_{\alpha}} \geq \frac{\varepsilon}{2} \Rightarrow p_{\alpha} \leq \frac{4\delta}{\varepsilon}$
- or $\frac{4\ln\frac{1}{p_{\alpha}}}{\varepsilon m} \ge \frac{\varepsilon}{2} \Rightarrow p_{\alpha} \le e^{\frac{\varepsilon^2 m}{8}}.$

References

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. Algorithmic stability for adaptive data analysis. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 1046–1059, 2016.