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Algorithm 1 Exponential Mechanism E(S,Y , f,∆, ε)

1: Define distribution DY (y) ∝ e
ε
2∆

f(y,S)

2: return y ∼ DY

Theorem 0.1. Let f : Y × S → R be the score function given as input to E. Let
OPT (S) = maxy∈Y f(y, S) be the largest score obtainable by any output y ∈ Y. Then
except with probability β,

f(E(S,Y , f,∆, ε), S) > OPT (S)− 2∆

ε
(ln |Y|+ log(1/β))

Theorem 0.2. Bassily et al. [2016] Let ε ∈ [
√

12
n
, 1
8
] and δ ≤ ε

16
. Let M : Xm → Q be an

(ε, δ)-private algorithm, where Q is the class of all queries such that |q(S)− q(S ′)| ≤ 1
m

for
|S| = m. Then for any distribution D on X :

Pr
S∼Dmq←M(S)

[|q(S)− q(D)| ≥ 6ε] ≤ max{4δ
ε
, e
−ε2m

8 }

Algorithm 2 Monitor({St}Tt=1)
Parameters: Number of datasets T
Privacy parameters ε, ε′, δ
(ε, δ)-DP MechanismM : X → Q
Distribution D on X
1: Y = ∅
2: for t ∈ [T ] do
3: qt ←M(St)
4: q−t(x) = 1− qt
5: Y = Y ∪ {(t, qt), (t, q−t)}
6: end for
7: define score f : Y → R, f((t, q), S) = q(St)− q(D)
8: ∆ = 1

|S1|
9: (t∗, q∗)← E(S, Y, f,∆, ε′)
10: return (t∗, q∗)



Proof Plan

1. Show Monitor is (ε+ ε′, δ)-DP

2. Lower bound the expected generalization error of the query output by the monitor as
a function of how oftenM overfits its data by more than 6ε

3. Upper bound the expected generalization error of the query output by the monitor
using a (modified) version of results we’ve seen already (stability ⇒ expected general-
ization guarantees)

4. Use the upper bound on generalization error to show that the probability of overfitting
by more than 6ε must be small, obtaining high probability generalization guarantees!

Claim 0.3. Let M be an (ε, δ)-DP algorithm. Then the Monitor algorithm run with M is
(ε+ ε′, δ)-DP.

Proof. Let MY ({St}Tt=1) be as in Algorithm 3. Then MY is (ε, δ)-DP. This follows from
the fact that for neighboring S, S ′, there is only a single value of t such that St ̸= S ′t, and
therefore there is only a single t such that {(t, qt), (t, q−t)} is not identically distributed to
{(t, q′t), (t, q′−t)}. Let Y = (y1, y2, . . . , yT ) and let t∗ denote the value of t∗ such that St∗ ̸= S ′t∗ .
Then we have

Pr[MY (S) = Y ] = Pr[M(S1) = y1] . . .Pr[M(St∗) = yt∗ ] . . .Pr[M(ST ) = yT ]

= Pr[M(S ′1) = y1] . . .Pr[M(S ′t∗) = yt∗ ] . . .Pr[M(S ′T ) = yT ] ·
Pr[M(St∗) = yt∗ ]

Pr[M(S ′t∗) = yt∗ ]

= Pr[MY (S
′) = Y ] · Pr[M(St∗) = yt∗ ]

Pr[M(S ′t∗) = yt∗ ]

≤ Pr[MY (S
′) = Y ] · e

ε Pr[M(S ′t∗) = yt∗ ] + δ

Pr[M(S ′t∗) = yt∗ ]

= eε Pr[MY (S
′) = Y ] +

δ Pr[MY (S
′) = Y ]

Pr[M(S ′t∗) = yt∗ ]

≤ eε Pr[MY (S
′) = Y ] + δ

Note that the Y given to E as input in the Monitor algorithm is just a postprocessing of
MY , as is therefore also (ε, δ)-DP. Recall that the exponential mechanism run with privacy
parameter ε is ε-DP. Then the composition of E with the post-processed output of MY is
(ε+ ε′, δ)-DP.



Algorithm 3 MY ({St}Tt=1)
Parameters: Number of datasets T
Privacy parameters ε, ε′

MechanismM : X → Q
Distribution D on X
1: Y = ∅
2: for t ∈ [T ] do
3: qt ←M(St)
4: Y = Y ∪ {(t, qt)}
5: end for
6: return Y

Claim 0.4. Let
pα = Pr

S∼Dm

q←M(S)

[q(S)− q(D) ≥ α].

Let Smax = max(t,q)∈Y f((t, q), S). Then

E
S∼(Dm)T

Monitor(S)

[Smax] ≥ α(1− (1− pα)
T ).

Proof. The probability that there exists some t ∈ [T ] such that qt(St) − qt(D) ≥ α is
1 − (1 − pα)

T . Furthermore Smax ≥ 0 always, because we include both q and 1 − q in Y .
Therefore

E
S∼(Dm)T

Monitor(S)

[Smax] ≥ α(1− (1− pα)
T ) + 0 · (1− pα)

T

Lemma 0.5. For every ε > 0, δ > 0, T ∈ N, and distribution D on X : If the algorithm
Monitor: (Xm)T → [T ]×Q is (ε, δ)-DP and S = (S1, . . . , ST ) ∼ (Dm)T , then

E
S∼(Dm)T

(t,q)∼Monitor(S)

[q(St)− q(D)] ≤ (eε − 1) + Tδ

(For the remainder of the analysis, we’ll make the simplifying assumption that E always
returns an output with nearly optimal score, rather than “except with probability β).

For the Monitor algorithm, we have ∆ = 1
m
, so we know that the exponential mechanism,



and therefore the Monitor algorithm, will return a pair (t, q) such that

f(E(S, Y, f,∆, ε), S) > Smax −
2 lnT

εm

⇒ q(St)− q(D) > Smax −
2 lnT

εm

⇒ E
S∼(Dm)T

(t,q)∼Monitor(S)

[q(St)− q(D)] > α(1− (1− pα)
T )− 2 log T

εm

We also have from Lemma 0.5 that

E
S∼(Dm)T

(t,q)∼Monitor(S)

[q(St)− q(D)] ≤ E
S∼(Dm)T

(t,q)∼Monitor(S)

[q(St)− q(D)] ≤ (eε+ε′ − 1) + Tδ

It follows that

α(1− (1− pα)
T )− 2 log T

εm
≤ (eε+ε′ − 1) + Tδ

Take ε′ = ε and T = ⌊1/pα⌋, so that 1 − pα ≤ pαT and note that for any pα ≤ 1/4 we
have

(1− pα)
T ≤ e−pαT ≤ e−1+pα ≤ 1/2.

Then

α(1− (1− pα)
T ) ≥ α

2

⇒ α

2
− 2 lnT

εm
≤ (e2ε − 1) + Tδ

⇒ α− 2(e2ε − 1) ≤ 4 lnT

εm
+ 2Tδ

≤
4 ln 1

pα

εm
+

2δ

pα

We want to show that pα ≤ max{4δ
ε
, e
−ε2m

8 } for α = 6ε, and ε ≤ 1/8. Recalling the fun
math fact e2x ≤ 1 + 2x+ 4x2 when x ≤ 1/2, it follows that e2ε − 1 ≤ 2ε+ 4ε2. Then

α− 2(e2ε − 1) ≥ 6ε− 4ε− 8ε2 ≥ 2ε− ε = ε

⇒ ε ≤
4 ln 1

pα

εm
+

2δ

pα

For this to be true, at least one of
4 ln

1
pα

εm
or 2δ

pα
must be at least than ε/2. So

• either 2δ
pα
≥ ε

2
⇒ pα ≤ 4δ

ε

• or
4 ln

1
pα

εm
≥ ε

2
⇒ pα ≤ e

ε2m
8 .
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