EN.601.774 Theory of Replicable ML Spring 2025
Lecture 17

Instructor: Jess Sorrell Scribe: Jess Sorrell

Algorithm 1 Exponential Mechanism (S, ), f, A, ¢)

3
1: Define distribution Dy (y) o canfwS)
2: return y ~ Dy

Theorem 0.1. Let f : Y xS — R be the score function given as input to €. Let
OPT(S) = maxyey f(y,S) be the largest score obtainable by any output y € Y. Then
except with probability 3,

2 (Y] + log(1/8))

3

fES, Y, f,A€),S) > OPT(S)

Theorem 0.2. Bassily et al| [2016] Let € € [\/*2,4] and 6 < 5. Let M : X™ — Q be an

n’8
(e,6)-private algorithm, where Q is the class of all queries such that |q(S) — q(S")| < = for
|S| = m. Then for any distribution D on X:

—€2m

P S) — q(D)| > 6¢] < 9 o7y
soorb T o 1105) — (D) 2 6] < max{2,e75 "}

Algorithm 2 Monitor({S;}/_;)
Parameters: Number of datasets T'
Privacy parameters ¢,¢’, 6
(¢,0)-DP Mechanism M : X — Q
Distribution D on X
Y =10
: for t € [T] do

g M(Sh)

q-+(z) =1—q

Y=YU {(tv Qt)a (tv Q—t)}
end for
define score f: Y — R, f((t,q),5) = q(S;) — q(D)
A=
(t*,q*) < E(S)Y, f,A, &)

return (t*,¢*)
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Proof Plan
1. Show Monitor is (¢ + &', §)-DP

2. Lower bound the expected generalization error of the query output by the monitor as
a function of how often M overfits its data by more than 6e

3. Upper bound the expected generalization error of the query output by the monitor
using a (modified) version of results we’ve seen already (stability = expected general-
ization guarantees)

4. Use the upper bound on generalization error to show that the probability of overfitting
by more than 6 must be small, obtaining high probability generalization guarantees!

Claim 0.3. Let M be an (g,0)-DP algorithm. Then the Monitor algorithm run with M is
(e +¢€,9)-DP

Proof. Let My ({S;}L,) be as in Algorithm [ Then My is (e,8)-DP. This follows from
the fact that for neighboring S, S, there is only a single value of ¢ such that S; # S}, and
therefore there is only a single ¢ such that {(¢,q;), (t,q_¢)} is not identically distributed to
{(t,q}), (t,q",)}. Let Y = (y1,ya,...,yr) and let t* denote the value of ¢ such that Sy # Sj..
Then we have

Pr[My(S) = Y] = PrlM(S1) = y] ... PrM(S;) = yee] ... PrIM(S1) = yr]
= Pr[M(S]) = w1]... PrIM(S}.) = yie] ... PRIM(S]) = ] - 113%§> 31
= Pr[My(S") =Y]- { ES 3 :Zij
< PriMy(8') = Y] - Pr[/[w(f ,3) _y;I]] -

S PrMy(5") =Y]
PrIM(SL) = ye]
< e PrMy(S")=Y]+6

=" PriMy(S") =Y] +

Note that the Y given to £ as input in the Monitor algorithm is just a postprocessing of
My, as is therefore also (g,0)-DP. Recall that the exponential mechanism run with privacy
parameter € is e-DP. Then the composition of £ with the post-processed output of My is
(e +¢',9)-DP. O



Algorithm 3 My ({S;}].,)
Parameters: Number of datasets T’
Privacy parameters ¢, ¢’
Mechanism M : X — Q
Distribution D on X
1. Y= 0

: for t € [T] do

G < M(5)

Y =Y U{(t,a)}
end for
return Y

Claim 0.4. Let

SN(Dm)T
Monitor(S)

Proof. The probability that there exists some t € [T] such that ¢(S;) — (D) > « is
1 — (1 — po)?. Furthermore S, > 0 always, because we include both ¢ and 1 — ¢ in Y.
Therefore

E  [Smae) > (1 = (1=pa)")+0-(1—pa)"
SN(Dm)T
Monitor(S)

]

Lemma 0.5. For every ¢ > 0,0 > 0,7 € N, and distribution D on X: If the algorithm
Monitor: (X™)T — [T] x Q is (¢,0)-DP and S = (Si,...,Sr) ~ (D™)T, then

E [9(S) —a(D)] < (e" = 1) +T%
SN(Dm)T
(t,q)~Monitor(S)

(For the remainder of the analysis, we’ll make the simplifying assumption that £ always
returns an output with nearly optimal score, rather than “except with probability /).
For the Monitor algorithm, we have A = %, so we know that the exponential mechanism,



and therefore the Monitor algorithm, will return a pair (¢, ¢) such that
2InT

f(S(S>Y7f7A7€)aS) > Sma;r; -
Em
2InT

_ D —
= Q(St) C]( ) > Smaa: cm

[q(S) — q(D)] > a(l — (1 — pa)T) — 2150,riT

= E
SN(Dm)T
(t,qg)~Monitor(S)

We also have from Lemma [0.5] that
E [q(S:) —q(D)] < E
SN(Dm)T

SN(Dm)T
(t,q)~Monitor(S) (t,q)~Monitor(S)

[4(Sy) — q(D)] < (e — 1)+ T§

It follows that S log T
28 (e 1) 4TS

o1~ (1)) - 28T <
Take ¢’ = ¢ and T = [1/pa], so that 1 — p, < p,T and note that for any p, < 1/4 we

have
(1 —pa)t <e Pl <eltPe <1/2,

Then

2 Em
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= oa—2e* —1) < —— 1 2T%
em

4InLt 95

< Pa + =7

Em Da

—€2m

We want to show that p, < max{*,e” 8 } for & = 6¢, and ¢ < 1/8. Recalling the fun
math fact €2* < 1+ 2z + 42% when x < 1/2, it follows that e* — 1 < 2¢ + 4¢2. Then

a—2(e*—1)>6c—4e—8*>2—c=¢
4InL 95

=¢e< Po | 2
em  pa

1
4In —
For this to be true, at least one of —2= or ;—5 must be at least than /2. So

: 26 € 49
° eltherp—aziépag?
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