EN.601.774 Theory of Replicable ML

Spring 2025

Lecture 18

Instructor: Jess Sorrell Scribe: Jess Sorrell

Algorithm 1 Exponential Mechanism $\mathcal{E}(S, \mathcal{Y}, f, \Delta, \varepsilon)$

1: Define distribution $D_Y(y) \propto e^{\frac{\varepsilon}{2\Delta}f(y,S)}$

2: return $y \sim D_Y$

Theorem 0.1. Let $f: \mathcal{Y} \times S \to \mathbb{R}$ be the score function given as input to \mathcal{E} . Let $OPT(S) = \max_{y \in \mathcal{Y}} f(y, S)$ be the largest score obtainable by any output $y \in \mathcal{Y}$. Then except with probability β ,

$$f(\mathcal{E}(S, \mathcal{Y}, f, \Delta, \varepsilon), S) > OPT(S) - \frac{2\Delta}{\varepsilon} \left(\ln |\mathcal{Y}| + \log(1/\beta) \right)$$

Theorem 0.2. Bassily et al. [2016] Let $\varepsilon \in [\sqrt{\frac{12}{n}}, \frac{1}{8}]$ and $\delta \leq \frac{\varepsilon}{16}$. Let $\mathcal{M} : \mathcal{X}^m \to \mathcal{Q}$ be an (ε, δ) -private algorithm, where \mathcal{Q} is the class of all queries such that $|q(S) - q(S')| \leq \frac{1}{m}$ for |S| = m. Then for any distribution D on \mathcal{X} :

$$\Pr_{S \sim D^m q \leftarrow \mathcal{M}(S)}[|q(S) - q(D)| \ge 6\varepsilon] \le \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$$

Algorithm 2 Monitor($\{S_t\}_{t=1}^T$)

Parameters: Number of datasets T

Privacy parameters $\varepsilon, \varepsilon', \delta$

 (ε, δ) -DP Mechanism $\mathcal{M}: \mathcal{X} \to \mathcal{Q}$

Distribution D on \mathcal{X}

- 1: $Y = \emptyset$
- 2: for $t \in [T]$ do
- 3: $q_t \leftarrow \mathcal{M}(S_t)$
- 4: $q_{-t}(x) = 1 q_t$
- 5: $Y = Y \cup \{(t, q_t), (t, q_{-t})\}$
- 6: end for
- 7: define score $f: Y \to \mathbb{R}, f((t,q),S) = q(S_t) q(D)$
- 8: $\Delta = \frac{1}{|S_1|}$
- 9: $(t^*, q^*) \leftarrow \mathcal{E}(S, Y, f, \Delta, \varepsilon')$
- 10: **return** (t^*, q^*)

Proof Plan

- 1. Show Monitor is $(\varepsilon + \varepsilon', \delta)$ -DP
- 2. Lower bound the expected generalization error of the query output by the monitor as a function of how often \mathcal{M} overfits its data by more than 6ε
- 3. Upper bound the expected generalization error of the query output by the monitor using a (modified) version of results we've seen already (stability \Rightarrow expected generalization guarantees)
- 4. Use the upper bound on generalization error to show that the probability of overfitting by more than 6ε must be small, obtaining high probability generalization guarantees!

Step 2

Claim 0.3. Let

$$p_{\alpha} = \Pr_{\substack{S \sim D^m \\ q \leftarrow \mathcal{M}(S)}} [q(S) - q(D) \ge \alpha].$$

Let $S_{max} = \max_{(t,q) \in Y} f((t,q), S) = \max_{(t,q) \in Y} q(S_t) - q(D)$. Then

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ Monitor(S)}} [S_{max}] \ge \alpha (1 - (1 - p_\alpha)^T).$$

Step 3

Lemma 0.4. (DP Monitor \Rightarrow Expected Generalization) For every $\varepsilon > 0, \delta > 0, T \in \mathbb{N}$, and distribution D on \mathcal{X} : If the algorithm Monitor: $(\mathcal{X}^m)^T \to [T] \times \mathcal{Q}$ is (ε, δ) -DP and $S = (S_1, \ldots, S_T) \sim (D^m)^T$, then

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] \le (e^{\varepsilon} - 1) + T\delta$$

Definition 0.5. Let X, Y be random variables over a shared domain \mathcal{O} . We write $X \approx_{\varepsilon, \delta}$ to indicate that X, Y are ϵ, δ indistinguishable. That is, for all $T \subset \mathcal{O}$,

$$\Pr[X \in \mathcal{O}] \le e^{\varepsilon} \Pr[Y \in \mathcal{O}] + \delta$$

Lemma 0.6. Let X, Y be distributions on a set \mathcal{O} such that $X \approx_{\varepsilon, \delta} Y$, and let $f : \mathcal{O} \to [0, 1]$ be a bounded real-valued function. Then

$$\mathbb{E}[f(X)] \le e^{\varepsilon} \, \mathbb{E}[f(Y)] + \delta$$

Proof. We'll use the fact that for non-negative r.v.'s $\mathbb{E}[X] = \int_{x=0}^{\infty} \Pr[f(X) \leq x] dx$

$$\mathbb{E}[f(X)] = \int_{z=0}^{1} \Pr[f(X) \le z] dz$$
$$\le \int_{z=0}^{1} e^{\varepsilon} \Pr[f(Y) \le z] + \delta dz$$
$$= e^{\varepsilon} \mathbb{E}[f(Y)] + \delta$$

Proof. (DP Monitor \Rightarrow Expected Generalization) We write $S = (S_1, \dots, S_t)$. Then we can express the expected value of the query q output by the Monitor on the associated subsample S_t :

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*, t^*) \leftarrow Monitor(S)}} [q^*(S_{t^*})] = \sum_{t=1}^T \mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*, t^*) \leftarrow Monitor(S)}} [\mathbb{1}_{t=t^*} \cdot q^*(S_{t^*})]$$

Similarly, we have

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*,t^*) \leftarrow Monitor(S)}} [q^*(D)] = \sum_{t=1}^T \mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*,t^*) \leftarrow Monitor(S)}} [\mathbb{1}_{t=t^*} \cdot q^*(D)]$$

Ultimately we want to be able to relate the expectation of q^* on S_{t*} to the expectation of q^* on D. Let's start by relating it to the expectation of q^* on a neighboring dataset. We won't just consider any worst-case neighboring dataset in this instance, however, we'll consider a neighboring dataset S' in which the new element $x' \sim D$, and $S' = (S_1, \ldots, S_{t,j \to x'}, \ldots, S_T)$. We know that the Monitor is (ε, δ) -DP, so its outputs (q^*, t^*) and $(q^{*'}, t^{*'})$ given S, S' must satisfy $(q^*, t^*) \approx_{\varepsilon, \delta} (q^{*'}, t^{*'})$ for any $t \in [T]$ and any $j \in [m]$.

We can follow the techniques from previous lectures and define the bounded function $f_{S,j}(q,t) = q(S_{t,j})$. For fixed j, let $S'_{t,j} = (S_1, \ldots, S_{t,j\to x'}, \ldots, S_T)$. Then using Lemma 0.6 and our distribution swapping trick, it follows that

$$\sum_{t=1}^{T} \underset{\substack{S \sim (D^{m})^{T} \\ (q^{*},t^{*}) \leftarrow Monitor(S)}}{\mathbb{E}} \left[\mathbb{1}_{t=t^{*}} \cdot q^{*}(S_{t}) \right] = \frac{1}{m} \sum_{j=1}^{m} \sum_{t=1}^{T} \underset{\substack{S \sim (D^{m})^{T} \\ (q^{*},t^{*}) \leftarrow Monitor(S)}}{\mathbb{E}} \left[\mathbb{1}_{t=t^{*}} \cdot q^{*}(S_{t,j}) \right]$$

$$\leq \frac{1}{m} \sum_{j=1}^{m} \sum_{t=1}^{T} e^{\varepsilon} \underset{\substack{S \sim (D^{m})^{T}, x' \sim D \\ (q^{*},t^{*}) \leftarrow Monitor(S'_{t,j})}}{\mathbb{I}_{t=t^{*}} \cdot q^{*}(S_{t,j})} + \delta$$

$$= \frac{1}{m} \sum_{j=1}^{m} \sum_{t=1}^{T} e^{\varepsilon} \underset{\substack{S \sim (D^{m})^{T}, x' \sim D \\ (q^{*},t^{*}) \leftarrow Monitor(S)}}{\mathbb{I}_{t=t^{*}} \cdot q^{*}(D)} + \delta$$

$$= \sum_{t=1}^{T} e^{\varepsilon} \underset{\substack{S \sim (D^{m})^{T} \\ (q^{*},t^{*}) \leftarrow Monitor(S)}}{\mathbb{I}_{t=t^{*}} \cdot q^{*}(D)} + \delta$$

$$= \sum_{t=1}^{T} e^{\varepsilon} \underset{\substack{S \sim (D^{m})^{T} \\ (q^{*},t^{*}) \leftarrow Monitor(S)}}{\mathbb{I}_{t=t^{*}} \cdot q^{*}(D)} + \delta$$

Therefore

$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] = \sum_{t=1}^T \mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*,t^*) \leftarrow Monitor(S)}} [\mathbb{1}_{t=t^*} \cdot q^*(S_{t^*}) - \mathbb{1}_{t=t^*} \cdot q^*(D)]$$

$$\leq \sum_{t=1}^T (e^{\varepsilon} - 1) \mathbb{E}_{\substack{S \sim (D^m)^T \\ (q^*,t^*) \leftarrow Monitor(S)}} [\mathbb{1}_{t=t^*} \cdot q^*(D)] + \delta$$

$$\leq (e^{\varepsilon} - 1) + T\delta$$

Step 4 (For the remainder of the analysis, we'll make the simplifying assumption that \mathcal{E} always returns an output with nearly optimal score, rather than "except with probability β).

For the Monitor algorithm, we have $\Delta = \frac{1}{m}$, so we know that the exponential mechanism,

and therefore the Monitor algorithm, will return a pair (t,q) such that

$$f(\mathcal{E}(S, Y, f, \Delta, \varepsilon), S) > S_{max} - \frac{2 \ln T}{\varepsilon m}$$

$$\Rightarrow q(S_t) - q(D) > S_{max} - \frac{2 \ln T}{\varepsilon m}$$
 by def of f

$$\Rightarrow \underset{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}}{\mathbb{E}} [q(S_t) - q(D)] > \alpha (1 - (1 - p_\alpha)^T) - \frac{2 \log T}{\varepsilon m}$$
 by Step 2

We also have from Lemma 0.4 that

also have from Lemma 0.4 that
$$\mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] \leq \mathbb{E}_{\substack{S \sim (D^m)^T \\ (t,q) \sim Monitor(S)}} [q(S_t) - q(D)] \leq (e^{\varepsilon + \varepsilon'} - 1) + T\delta$$

It follows that

$$\alpha(1 - (1 - p_{\alpha})^T) - \frac{2\log T}{\varepsilon m} \le (e^{\varepsilon + \varepsilon'} - 1) + T\delta$$

Take $\varepsilon' = \varepsilon$ and $T = \lfloor 1/p_{\alpha} \rfloor$, so that $1 - p_{\alpha} \le p_{\alpha}T$ and note that for any $p_{\alpha} \le 1/4$ we have

$$(1 - p_{\alpha})^T \le e^{-p_{\alpha}T} \le e^{-1+p_{\alpha}} \le 1/2.$$

Then

$$\alpha(1 - (1 - p_{\alpha})^{T}) \ge \frac{\alpha}{2}$$

$$\Rightarrow \frac{\alpha}{2} - \frac{2 \ln T}{\varepsilon m} \le (e^{2\varepsilon} - 1) + T\delta$$

$$\Rightarrow \alpha - 2(e^{2\varepsilon} - 1) \le \frac{4 \ln T}{\varepsilon m} + 2T\delta$$

$$\le \frac{4 \ln \frac{1}{p_{\alpha}}}{\varepsilon m} + \frac{2\delta}{p_{\alpha}}$$

We want to show that $p_{\alpha} \leq \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$ for $\alpha = 6\varepsilon$, and $\varepsilon \leq 1/8$. Recalling the fun math fact $e^{2x} \leq 1 + 2x + 4x^2$ when $x \leq 1/2$, it follows that $e^{2\varepsilon} - 1 \leq 2\varepsilon + 4\varepsilon^2$. Then

$$\alpha - 2(e^{2\varepsilon} - 1) \ge 6\varepsilon - 4\varepsilon - 8\varepsilon^2 \ge 2\varepsilon - \varepsilon = \varepsilon$$

$$\Rightarrow \varepsilon \le \frac{4\ln\frac{1}{p_\alpha}}{\varepsilon m} + \frac{2\delta}{p_\alpha}$$

For this to be true, at least one of $\frac{4 \ln \frac{1}{p_{\alpha}}}{\varepsilon m}$ or $\frac{2\delta}{p_{\alpha}}$ must be at least than $\varepsilon/2$. So

• either $\frac{2\delta}{p_{\alpha}} \geq \frac{\varepsilon}{2} \Rightarrow p_{\alpha} \leq \frac{4\delta}{\varepsilon}$

• or
$$\frac{4\ln\frac{1}{p_{\alpha}}}{\varepsilon m} \ge \frac{\varepsilon}{2} \Rightarrow p_{\alpha} \le e^{\frac{\varepsilon^2 m}{8}}$$
.

References

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. Algorithmic stability for adaptive data analysis. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 1046–1059, 2016.