EN.601.774 Theory of Replicable ML Spring 2025
Lecture 18

Instructor: Jess Sorrell Scribe: Jess Sorrell

Algorithm 1 Exponential Mechanism (S, ), f, A, ¢)

3
1: Define distribution Dy (y) o canfwS)
2: return y ~ Dy

Theorem 0.1. Let f : Y xS — R be the score function given as input to €. Let
OPT(S) = maxyey f(y,S) be the largest score obtainable by any output y € Y. Then
except with probability 3,

2 (Y] + log(1/8))

3

fES, Y, f,A€),S) > OPT(S)

Theorem 0.2. Bassily et al| [2016] Let € € [\/*2,4] and 6 < 5. Let M : X™ — Q be an

n’8
(e,6)-private algorithm, where Q is the class of all queries such that |q(S) — q(S")| < = for
|S| = m. Then for any distribution D on X:

—€2m

P S) — q(D)| > 6¢] < 9 o7y
soorb T o 1105) — (D) 2 6] < max{2,e75 "}

Algorithm 2 Monitor({S;}/_;)
Parameters: Number of datasets T'
Privacy parameters ¢,¢’, 6
(¢,0)-DP Mechanism M : X — Q
Distribution D on X
Y =10
: for t € [T] do

g M(Sh)

q-+(z) =1—q

Y=YU {(tv Qt)a (tv Q—t)}
end for
define score f: Y — R, f((t,q),5) = q(S;) — q(D)
A=
(t*,q*) < E(S)Y, f,A, &)

return (t*,¢*)
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Proof Plan
1. Show Monitor is (¢ + &', §)-DP

2. Lower bound the expected generalization error of the query output by the monitor as
a function of how often M overfits its data by more than 6e

3. Upper bound the expected generalization error of the query output by the monitor
using a (modified) version of results we’ve seen already (stability = expected general-
ization guarantees)

4. Use the upper bound on generalization error to show that the probability of overfitting
by more than 6 must be small, obtaining high probability generalization guarantees!

Step 2

Claim 0.3. Let

Let Siaz = maxggey f((t,q),S) = maxygev ¢(S:) — q(D). Then

E [Smax] Z Oé(l - (1 - pa)T>-
SN(Dm)T
Monitor(S)

Step 3

Lemma 0.4. (DP Monitor = Expected Generalization) For every ¢ > 0,6 > 0,7 € N,
and distribution D on X: If the algorithm Monitor: (X™)T — [T] x Q is (£,0)-DP and
S =(S,...,57) ~ (D™7T, then

E [9(S) —q(D)] < (e" = 1) +T%
SN(Dm)T
(t,q)~Monitor(S)

Definition 0.5. Let X,Y be random variables over a shared domain O. We write X =~
to indicate that X, Y are €, indistinguishable. That is, for all T C O,

PriX e O] <e*Pr[Y € O]+

Lemma 0.6. Let X, Y be distributions on a set O such that X ~.5Y, and let f : O — [0, 1]
be a bounded real-valued function. Then

E[f(X)] < e E[f(Y)] +6



Proof. We'll use the fact that for non-negative r.v.’s E[X] = [ Pr[f(X) < z]dx

E[f(X)] = / Prf(X) < 2Jdz

=0

< / e Prf(Y) < z]+ ddz

=0

=e"E[f(Y)]+0
O

Proof. (DP Monitor = Expected Generalization) We write S = (Si,...,S¢). Then we can
express the expected value of the query ¢q output by the Monitor on the associated subsample

Sti

E [q"(Se)] = Z K [L=te - ¢ (Se-)]
S~(Dm)T ~ supmyT
(¢*,t*)«Monitor(S) (g*,t* )« Monitor(S)
Similarly, we have
T
E ¢"(D)] = E Liepe - ¢*(D
VB, WOI=X B g (D)
(¢*,t*)«Monitor(S) (g*,t* ) Monitor(S)

Ultimately we want to be able to relate the expectation of ¢* on S, to the expectation of
q* on D. Let’s start by relating it to the expectation of ¢* on a neighboring dataset. We won’t
just consider any worst-case neighboring dataset in this instance, however, we’ll consider a
neighboring dataset S’ in which the new element 2’ ~ D, and S' = (S1,..., St j=a,- .-, S7)-
We know that the Monitor is (¢,6)-DP, so its outputs (¢*,¢*) and (¢*,t*) given S, S’ must
satisfy (¢*,t*) ~.5 (¢*',t") for any ¢ € [T] and any j € [m].

We can follow the techniques from previous lectures and define the bounded function
fsj(q,t) = q(Si;). For fixed j, let Si; = (S1,..., 8 j5a,...,S5r). Then using Lemma
and our distribution swapping trick, it follows that



E
SN(Dm)T
(q*,t* )+ Monitor(S)

) (L=t - q7(51)]

t=1

Therefore

E
SN(Dm)T
(t,q)~Monitor(S)

[q(S:) — q(D)] =
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Step 4
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(g* ,t* )+ Monitor(S)
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E [Le—se - ¢"(D)] + 6
S~ (D™)T

(g* ,;t* )+ Monitor(S)

[M] =

E
SN(Dm)T
(¢*,t*)«Monitor(S)

[]lt:t* : q*(St*) — Ty - q*(D)]

t=1

[M] =

€1 B [eeq D]+
=1 SN(Dm)T
(g*,t* )« Monitor(S)
(ef—=1)+TH

O

(For the remainder of the analysis, we’ll make the simplifying assumption that &

always returns an output with nearly optimal score, rather than “except with probability

B)-

For the Monitor algorithm, we have A = %, so we know that the exponential mechanism,



and therefore the Monitor algorithm, will return a pair (¢, ¢) such that

2InT
f(g(S7Y7f7A7€)as)>Smax_ -
em
2InT
= ¢(8)) = q(D) > Sy — — by def of f
em
2logT
= B [q(S) —q(D)] > a(l— (1 —p,)T) - 2 by Step 2
S~(D™)T em
(t,qg)~Monitor(S)
We also have from Lemma [0.4] that
E , lS)—aD)< E - la(s)—a(D) < (e = 1) + T

SN(Dm)T
(t,q)~Monitor(S)

It follows that

(t,g)~Monitor(S)

2logT /
a(l = (1—pa)7) — 8L < (et — 1) + T
em
Take ¢’ = ¢ and T = [1/pa], so that 1 — p, < p,T and note that for any p, < 1/4 we

have
(1 —pa)t <e Pl <eltPe <1/2,

Then

a 2InT
- — < (e*—-1)+T6
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We want to show that p, < max{*,e” 8 } for & = 6¢, and ¢ < 1/8. Recalling the fun
math fact €2* < 1+ 2z + 42% when x < 1/2, it follows that e* — 1 < 2¢ + 4¢2. Then

a—2(e*—1)>6c—4e—8*>2—c=¢
4InL 95
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For this to be true, at least one of —2= or ;—5 must be at least than /2. So
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