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1 Accuracy of Composed Stable Mechanisms

Last time we finished proving this wonderful theorem:

Theorem 1.1. Bassily et al. [2016] Let ε ∈ [
√

12
n
, 1
8
] and δ ≤ ε

16
. Let M : Xm → Q be an

(ε, δ)-private algorithm, where Q is the class of all queries such that |q(S)− q(S ′)| ≤ 1
m

for
|S| = m. Then for any distribution D on X :

Pr
S∼Dmq←M(S)

[|q(S)− q(D)| ≥ 6ε] ≤ max{4δ
ε
, e
−ε2m

8 }

We now want to argue that we can ensure all queries are sufficiently accurate as well!

Theorem 1.2. Let M be the k-fold sequential adaptive composition of k mechanisms for
answering queries. Let (a1, a2, . . . , ak) ←M(S) for |S| = m. Suppose that M(S) is (ε, δ)-
DP and the empirical error of each aj is smaller than α except with probability β. That is,
for all j ∈ [k]:

Pr
S∼Dm,M

[|aj − ϕj(S)| ≥ α] < β.

Then for every distribution D, we have

Pr
S,M

[
k

max
j=1
|aj − ϕj(D)| ≥ 6ε+ α] ≤ βk +max{4δ

ε
, e
−ε2m

8 }.

Proof.
k

max
j=1
|aj − ϕj(D)| ≤ max

j=[k]
|aj − ϕj(S)|+ |ϕj(S)− ϕj(D)|

We have from assumption that |aj−ϕj(S)| < α except with probability at most β. Union
bounding over k queries then gives us

Pr
S∼Dm,M

[max
j∈[k]
|aj − ϕj(S)| ≥ α] ≤ βk.

What about the second term? How do we bound |ϕj(S) − ϕj(D)| for the worst query?
Note that we can’t just use a standard Chernoff-Hoeffding bound, because the data is no
longer independent of the query. We’ll use a monitor argument again (but simpler this time).
This time our monitor will look at all of the queries ϕj produced byM and select the one
that overfits the most. That is,

MonitorD(ϕ1, a1, ϕ2, a2, . . . , ϕk, ak) = ϕj∗



where j∗ = argmaxj∈[k] |aj−ϕ(D)|. Note that the Monitor algorithm is just a post-processing
of an (ε, δ)-DP algorithm. Therefore the algorithm Monitor ◦ M(S) is also (ε, δ)-DP. We
just finished showing (ε, δ)-DP algorithms outputting statistical queries generalize, so we
have

Pr
S∼Dm,M

[|ϕj∗(S)− ϕj∗(D)| ≥ 6ε] ≤ max{4δ
ε
, e
−ε2m

8 }

Putting it all together, we have

Pr
S,M

[
k

max
j=1
|aj − ϕj(D)| ≥ 6ε+ α] ≤ Pr

S,M
[

k
max
j=1
|aj − ϕj(S)|+ |ϕj(S)− ϕj(D)| ≥ 6ε+ α]

≤ βk +max{4δ
ε
, e
−ε2m

8 }

Example: Laplace Mechanism. Recall the Laplace distribution Lap(ε, µ) has PDF

f(x) = 1
2ε
e

−|x−µ|
ε . We’ll write Lap(ε) = Lap(ε, 0).

Algorithm 1 Laplace mechanism LM(ε, S, ϕ)
Inputs/Parameters:
ε, scale parameter for Laplace distribution
S = {xi}mi=1, dataset

1: ν ← Lap( 1
mε

)
2: return a = 1

m

∑m
i=1 ϕ(xi) + ν

We ultimately want a sample complexity bound for answering k adaptive statistical
queries using the Laplace mechanism, such that the answers for all queries have error at
most α, and the final query has generalization error α. So we need to do the following:

1. Recall that the Laplace mechanism is (ε, 0)-DP

2. Use our results on the stability of the k-fold adaptive composition of DP mechanisms
to say that the sequential adaptive composition of k queries is also DP

3. Use DP ⇒ high prob generalization to fix the privacy parameter ε for the laplace
mechanism

4. Obtain high probability bounds on the empirical error of the Laplace mechanism with
privacy parameter ε

5. Determine sample size necessary to ensure empirical error of all queries is sufficiently
small



For (2), recall that we showed the k-fold adaptive composition of (ε, 0)-DP mechanisms
is (ϵ

√
2k ln 1/δ + kε(eε − 1), δ)-DP, for all δ. Recall that we said if ε < 1√

k
and we didn’t

worry too much about log factors, this is (Õ(ε
√
k), δ)-DP

We want generalization error α, and our DP ⇒ h.p. generalization result gives us

generalization error bounded by 6ε, so we need Õ(ε
√
k) ∈ O(α) ⇒ ε ∈ O

(
α√
k

)
. For

target failure rate β, we need 4δ
α

< O(β), and e
−α2m

8 < O(β). This means δ ∈ O(αβ) and

m > log 1/β
α2 .

Now we need empirical error bounds for the Laplace mechanism!

Claim 1.3. Let LM be the Laplace mechanism. For any α, β′, ε > 0, let m ∈ O( log(1/β
′)

εα
)

and let S ∼ Dm. Then with probability at least 1− β′:

|a− ϕ(S)| ≤ α

Proof. Note that |a− ϕ(S)| = ν ← Lap( 1
mε

), so it suffices to get high probability bounds on
|ν|.

Pr
η∼Lap( 1

mε
)

[|η| ≥ t
mε

] = 2 Pr
η∼Lap( 1

mε
)

[η ≥ t
mε

]

= 2

∫ ∞
t

mε

mε
2
e−xmεdx

=

∫ ∞
t

e−xdx

= e−t

Therefore, for m ∈ O( log(1/β
′)

αε
), we have that

Pr
η∼Lap( 1

mε
)

[|η| ≥ α] ≤ β′

This brings us to (4). We’ve already ensured max{4δ
ε
, e

−ε2m
8 } < β, so we just need

to ensure that β′, the empirical accuracy failure rate for a single query is less than β
k
.

This implies that we need m ∈ O( log k/β
αε

). Substituting our value of ε, we have that m ∈
O(
√
k log k/β
α2 ) to guarantee that except with probability β/k:

|aj − ϕj(S)| ≤ α

for any j ∈ [k], and therefore:

Pr
S,M

[
k

max
j=1
|aj − ϕj(D)| ≥ O(α)] ≤ O(β).

Therefore taking m ∈ O(
√
k log k/β
α2 ) and using privacy parameter ε ∈ O( α√

k
) suffices to obtain

generalization error α for the adaptive sequential composition of k statistical queries, except
with probability at most β.
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