Spring 2025

Lecture 19

1 Accuracy of Composed Stable Mechanisms

Last time we finished proving this wonderful theorem:

Theorem 1.1. Bassily et al. [2016] Let $\varepsilon \in [\sqrt{\frac{12}{n}}, \frac{1}{8}]$ and $\delta \leq \frac{\varepsilon}{16}$. Let $\mathcal{M} : \mathcal{X}^m \to \mathcal{Q}$ be an (ε, δ) -private algorithm, where \mathcal{Q} is the class of all queries such that $|q(S) - q(S')| \leq \frac{1}{m}$ for |S| = m. Then for any distribution D on \mathcal{X} :

$$\Pr_{S \sim D^m q \leftarrow \mathcal{M}(S)}[|q(S) - q(D)| \ge 6\varepsilon] \le \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$$

We now want to argue that we can ensure all queries are sufficiently accurate as well!

Theorem 1.2. Let \mathcal{M} be the k-fold sequential adaptive composition of k mechanisms for answering queries. Let $(a_1, a_2, \ldots, a_k) \leftarrow \mathcal{M}(S)$ for |S| = m. Suppose that $\mathcal{M}(S)$ is (ε, δ) -DP and the empirical error of each a_j is smaller than α except with probability β . That is, for all $j \in [k]$:

$$\Pr_{S \sim D^m, \mathcal{M}}[|a_j - \phi_j(S)| \ge \alpha] < \beta$$

Then for every distribution D, we have

$$\Pr_{S,\mathcal{M}}[\max_{j=1}^{k} |a_j - \phi_j(D)| \ge 6\varepsilon + \alpha] \le \beta k + \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}.$$

Proof.

$$\max_{j=1}^{k} |a_j - \phi_j(D)| \le \max_{j=[k]} |a_j - \phi_j(S)| + |\phi_j(S) - \phi_j(D)|$$

We have from assumption that $|a_j - \phi_j(S)| < \alpha$ except with probability at most β . Union bounding over k queries then gives us

$$\Pr_{S \sim D^m, \mathcal{M}}[\max_{j \in [k]} |a_j - \phi_j(S)| \ge \alpha] \le \beta k.$$

What about the second term? How do we bound $|\phi_j(S) - \phi_j(D)|$ for the worst query? Note that we can't just use a standard Chernoff-Hoeffding bound, because the data is no longer independent of the query. We'll use a monitor argument again (but simpler this time). This time our monitor will look at all of the queries ϕ_j produced by \mathcal{M} and select the one that overfits the most. That is,

$$Monitor_D(\phi_1, a_1, \phi_2, a_2, \dots, \phi_k, a_k) = \phi_{j^*}$$

where $j^* = \operatorname{argmax}_{j \in [k]} |a_j - \phi(D)|$. Note that the Monitor algorithm is just a post-processing of an (ε, δ) -DP algorithm. Therefore the algorithm *Monitor* $\circ \mathcal{M}(S)$ is also (ε, δ) -DP. We just finished showing (ε, δ) -DP algorithms outputting statistical queries generalize, so we have

$$\Pr_{z \sim D^m, \mathcal{M}}[|\phi_{j^*}(S) - \phi_{j^*}(D)| \ge 6\varepsilon] \le \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$$

Putting it all together, we have

S

$$\Pr_{S,\mathcal{M}}[\max_{j=1}^{k} |a_j - \phi_j(D)| \ge 6\varepsilon + \alpha] \le \Pr_{S,\mathcal{M}}[\max_{j=1}^{k} |a_j - \phi_j(S)| + |\phi_j(S) - \phi_j(D)| \ge 6\varepsilon + \alpha] \le \beta k + \max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\}$$

Example: Laplace Mechanism. Recall the Laplace distribution $Lap(\varepsilon, \mu)$ has PDF $f(x) = \frac{1}{2\varepsilon} e^{\frac{-|x-\mu|}{\varepsilon}}$. We'll write $Lap(\varepsilon) = Lap(\varepsilon, 0)$.

Algorithm 1 Laplace mechanism $\mathcal{LM}(\varepsilon, S, \phi)$ Inputs/Parameters: ε , scale parameter for Laplace distribution $S = \{x_i\}_{i=1}^m$, dataset

1: $\nu \leftarrow Lap(\frac{1}{m\varepsilon})$ 2: **return** $a = \frac{1}{m} \sum_{i=1}^{m} \phi(x_i) + \nu$

We ultimately want a sample complexity bound for answering k adaptive statistical queries using the Laplace mechanism, such that the answers for all queries have error at most α , and the final query has generalization error α . So we need to do the following:

- 1. Recall that the Laplace mechanism is $(\varepsilon, 0)$ -DP
- 2. Use our results on the stability of the k-fold adaptive composition of DP mechanisms to say that the sequential adaptive composition of k queries is also DP
- 3. Use $DP \Rightarrow$ high prob generalization to fix the privacy parameter ε for the laplace mechanism
- 4. Obtain high probability bounds on the empirical error of the Laplace mechanism with privacy parameter ε
- 5. Determine sample size necessary to ensure empirical error of all queries is sufficiently small

For (2), recall that we showed the k-fold adaptive composition of $(\varepsilon, 0)$ -DP mechanisms is $(\epsilon \sqrt{2k \ln 1/\delta} + k\varepsilon(e^{\varepsilon} - 1), \delta)$ -DP, for all δ . Recall that we said if $\varepsilon < \frac{1}{\sqrt{k}}$ and we didn't worry too much about log factors, this is $(\tilde{O}(\varepsilon\sqrt{k}), \delta)$ -DP

We want generalization error α , and our $DP \Rightarrow h.p.$ generalization result gives us generalization error bounded by 6ε , so we need $\tilde{O}(\varepsilon\sqrt{k}) \in O(\alpha) \Rightarrow \varepsilon \in O\left(\frac{\alpha}{\sqrt{k}}\right)$. For target failure rate β , we need $\frac{4\delta}{\alpha} < O(\beta)$, and $e^{\frac{-\alpha^2 m}{8}} < O(\beta)$. This means $\delta \in O(\alpha\beta)$ and $m > \frac{\log 1/\beta}{\alpha^2}$.

Now we need empirical error bounds for the Laplace mechanism!

Claim 1.3. Let \mathcal{LM} be the Laplace mechanism. For any $\alpha, \beta', \varepsilon > 0$, let $m \in O(\frac{\log(1/\beta')}{\varepsilon\alpha})$ and let $S \sim D^m$. Then with probability at least $1 - \beta'$:

$$|a - \phi(S)| \le \alpha$$

Proof. Note that $|a - \phi(S)| = \nu \leftarrow Lap(\frac{1}{m\varepsilon})$, so it suffices to get high probability bounds on $|\nu|$.

$$\Pr_{\eta \sim Lap(\frac{1}{m\varepsilon})} [|\eta| \ge \frac{t}{m\varepsilon}] = 2 \Pr_{\eta \sim Lap(\frac{1}{m\varepsilon})} [\eta \ge \frac{t}{m\varepsilon}]$$
$$= 2 \int_{\frac{t}{m\varepsilon}}^{\infty} \frac{m\varepsilon}{2} e^{-xm\varepsilon} dx$$
$$= \int_{t}^{\infty} e^{-x} dx$$
$$= e^{-t}$$

Therefore, for $m \in O(\frac{\log(1/\beta')}{\alpha\varepsilon})$, we have that

$$\Pr_{\eta \sim Lap(\frac{1}{m\varepsilon})}[|\eta| \geq \alpha] \leq \beta'$$

This brings us to (4). We've already ensured $\max\{\frac{4\delta}{\varepsilon}, e^{\frac{-\varepsilon^2 m}{8}}\} < \beta$, so we just need to ensure that β' , the empirical accuracy failure rate for a single query is less than $\frac{\beta}{k}$. This implies that we need $m \in O(\frac{\log k/\beta}{\alpha\varepsilon})$. Substituting our value of ε , we have that $m \in O(\frac{\sqrt{k}\log k/\beta}{\alpha^2})$ to guarantee that except with probability β/k :

$$|a_j - \phi_j(S)| \le \alpha$$

for any $j \in [k]$, and therefore:

$$\Pr_{S,\mathcal{M}}[\max_{j=1}^k |a_j - \phi_j(D)| \ge O(\alpha)] \le O(\beta).$$

Therefore taking $m \in O(\frac{\sqrt{k} \log k/\beta}{\alpha^2})$ and using privacy parameter $\varepsilon \in O(\frac{\alpha}{\sqrt{k}})$ suffices to obtain generalization error α for the adaptive sequential composition of k statistical queries, except with probability at most β .

References

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. Algorithmic stability for adaptive data analysis. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 1046–1059, 2016.