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Last time we considered the problem of “replicating” an estimate of the 0-1 loss of a
given model h on distribution D. We wanted to show

Pr
S1,S2

[|ℓS1(h)− ℓS2(h)| ≥ ε] ≤ δ,

and argued that it suffices to show

Pr
S1,S2

[|ℓS1(h)− ℓD(h)| ≥ ε/2] ≤ δ/2,

We proved Chebyshev’s Inequality:

Theorem 0.1 (Chebyshev’s Inequality). Let X be a random variable with non-zero variance
σ2 = Var(X). Then for any λ > 0

Pr[|X − E[X]| ≥ λσ] ≤ 1

λ2
.

And we applied it to the r.v. ℓS1(h) to show that

Pr
S1

[|ℓS1(h)− ℓD(h)| ≥ ε] ≤ 1

4mε2
.

So if we want PrS1 [|ℓS1(h)− ℓD(h)| ≥ ε] < δ, we can take m > 1
4ε2δ

.
Great! So now we have some guarantee that, so long as we take our sample large enough

(and so does the other team of researchers), replication efforts will be successful with good
probability! Both research teams will end up with an empirical loss ℓS(h) that is close to its
expectation ℓD(h), and therefore close to the other team’s, except with probability 2δ. But
we can do much, much better!

Theorem 0.2 (Hoeffding’s Inequality). Let X1, X2, . . . , Xm be independent, bounded random
variables with Xi ∈ [ai, bi]. Let Sm =

∑m
i=1 Xi. Then

Pr
X1,X2,...,Xm

[Sm ≥ E[Sm] + t] ≤ e
− 2t2∑m

i=1
(bi−ai)

2
.

Note that this also applies to S ′
m = −

∑m
i=1Xi and so

Pr
X1,X2,...,Xm

[S ′
m ≥ E[S ′

m] + t] ≤ e
− 2t2∑m

i=1
(bi−ai)

2

Pr
X1,X2,...,Xm

[Sm ≤ E[Sm]− t] ≤ e
− 2t2∑m

i=1
(bi−ai)

2

Pr
X1,X2,...,Xm

[|Sm − E[Sm]| ≥ t] ≤ 2e
− 2t2∑m

i=1
(bi−ai)

2



Since the empirical 0-1 loss ℓS1(h) =
1
m

∑m
i=1 ℓ(h(xi), yi)), we have.

Pr
S∼Dm

[|ℓS(h)− ℓD(h)| ≥ t/m] ≤ 2e
− 2t2∑m

i=1
(bi−ai)

2

and so
Pr

S∼Dm
[|ℓS(h)− ℓD(h)| ≥ t] ≤ 2e−2t2m.

Then if we want to ensure PrS∼Dm [|ℓS(h)− ℓD(h)| ≥ ε] ≤ δ, we can take

2e−2ε2m ≤ ln(δ)

ln(2)− 2ε2m ≤ ln(δ)

2ε2m ≥ − ln(δ/2)

m ≥ − ln(δ/2)

2ε2

m ≥ ln(2/δ)

2ε2

many samples from D. This is only logarithmic in 1/δ, instead of linear!
We’ll prove this theorem is 2 parts. We’ll assume the following lemma (to be proved

later).

Lemma 0.3 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b]. Then
for any λ > 0,

E[eλ(X−E[X])] ≤ e
λ2(b−a)2

8

Proof. (Hoeffding’s Inequality) From Markov’s inequality, we know that for all λ, t > 0,

Pr[Sm − E[Sm] ≥ t] = Pr[eλ(Sm−E[Sm]) ≥ eλt]

≤ E[eλ(Sm−E[Sm])]

eλt
Markov’s inequality

=
E[eλ(

∑m
i=1 Xi−E[Xi])]

eλt
def of Sm and linearity of E

=
E[
∏m

i=1 e
λ(Xi−E[Xi])]

eλt

=

∏m
i=1 E[eλ(Xi−E[Xi])]

eλt
Independence of Xis

≤
∏m

i=1 e
λ2(bi−ai)

2

8

eλt
Hoeffding’s lemma

We showed this is true for all λ > 0, so in particular is must be true for λ = 4t∑m
i=1(bi−ai)2

.



Then we have

Pr[Sm − E[Sm] ≥ t] ≤
∏m

i=1 e
λ2(bi−ai)

2

8

eλt

=
e

λ2

8

∑m
i=1(bi−ai)

2

eλt

= e
λt
2
−λt

= e−
λt
2

= e
− 2t2∑m

i=1
(bi−ai)

2

Now it remains to prove the lemma.

Lemma 0.4 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b]. Then
for any λ > 0,

E[e(λX−E[X])] ≤ e
λ2(b−a)2

8

Proof. We first define a new random variable Z = X − E[X] and note that Z ∈ [c, d] for
l = a− E[X], u = b− E[X] (and so b− a = u− l).

By convexity of exp, we have that for all z ∈ [c, d]

eλz ≤ u− z

u− l
eλl +

z − l

u− c
eλd.

It follows that

E[eλZ ] ≤ E
[
u− Z

u− l

]
eλl + E

[
Z − l

u− l

]
eλu

=
ueλl − leλu

u− l
E[Z] = 0.

Where do we go now? If we could show that E[eλZ ] ≤ eF (λ(u−l)), for some function F , and
then bound F (x) ≤ x2

8
, we’d be set. So let’s try to massage that last equality into the right

form. We want to find F such that

eF (λ(u−l)) =
ueλl − leλu

u− l

Note that λl = λ(u−l)l
u−l

and λu = λ(u−l)u
u−l

. So writing x = λ(u − l), our goal is to find F



such that

eF (x) =
ue

xl
u−l − le

xu
u−l

u− l

= e
xl

u−l

(
u− le

x(u−l)
u−l

u− l

)
pull out e

xl
u−l

= e
xl

u−l

(
u− l + l − lex

u− l

)
add 0

= e
xl

u−l

(
1 +

l − lex

u− l

)
So

F (x) = ln
(
e

xl
u−l (1 + l−lex

u−l
)
)

= ln(e
xl

u−l ) + ln(1 + l−lex

u−l
)

=
xl

u− l
+ ln(1 + l(1−ex)

u−l
)

How do we show this is less than λ2(b−a)2

8
? We’ll apply Taylor’s theorem to F (x) around 0.

Theorem 0.5 (Taylor (specific to our applications)). If a real-valued function F is twice-
differentiable at x = 0, then there exists some γ ∈ [0, 1] such that

F (x) = F (0) + xF ′(0) + x2

2
F ′′(γx)

We have F (0) = 0. What about F ′(0)?

F ′(x) =
l

u− l
+

df(x)
dx

f(x)
for f(x) = 1 + l(1−ex)

u−l

df(x)

dx
=

−lex

u− l

so F ′(0) =
l

u− l
−

l
u−l

1
= 0.



One more!

F ′′(x) =
d

dx

(
l

u− l
+

−lex

u−l

1 + l(1−ex)
u−l

)

=
d

dx

(
−lex

u−l

1 + l(1−ex)
u−l

)

=
d

dx

(
−lex

u− l + l(1− ex)

)
=

d

dx

(
−lex

u− lex

)
=

−luex

(u− lex)2

From the AMGM inequality, we know that −luex ≤ (u−lex)2

4
, so we have F ′′(x) ≤ 1/4 for

all x! Then Taylor’s theorem tells us that there’s some γ ∈ [0, 1] such that

F (x) = F (0) + xF ′(0) + x2

2
F ′′(γx)

≤ x2

8

and we’re done!
Putting it all together we have

E[eλZ ] ≤ eF (λ(u−l) = eF (λ(b−c)) ≤ e
λ2(b−a)2

8


