
EN.601.774 Theory of Replicable ML Spring 2025

Lecture 20
Instructor: Jess Sorrell Scribe: Jess Sorrell

1 Replicable Heavy Hitters

Definition 1.1 (v-heavy-hitter). Let D be a distribution over X . We say that x ∈ X is a
v-heavy-hitter of D if Prx′∼D[x = x′] ≥ v.

Definition 1.2 (Approximate Heavy-Hitter Problem). Let Lv be the set of x ∈ support(D)
that are v-heavy-hitters. For a target v, ε > 0, output L satisfying

Lv−ε ⊆ L ⊆ Lv+ε

Identifying heavy hitters of a distribution or stream is a common problem in ML. It has
numerous applications:

• NLP - identifying common tokens

• security - anomaly detection

• ML - class imbalance handling

• recommender systems - data summarization and sketching

Let D be a distribution over X . The following algorithm reproducibly returns a set of
v′-heavy-hitters of D, where v′ is a random value in [v − ϵ, v + ϵ]. Picking v′ randomly
allows the algorithm to, with high probability, avoid a situation where the cutoff for being a
heavy-hitter (i.e. v′) is close to the probability mass of any x ∈ support(D).

Algorithm 1 rHeavyHitters(ρ, v, ϵ, S)
Input: Sample S from distribution D over X
Target reproducibility ρ
target range [v − ε, v + ε]
Output: List of v′-heavy-hitters of D, where v′ ∈ [v − ε, v + ε]

S1 = first m1 :=
ln(6/(ρ(v−ϵ)))

v−ϵ
examples from S {Step 1: Find candidate heavy-hitters}

S2 = remaining m2 :=
9 ln(12m1/ρ)·m2

1

2(ρϵ)2
fresh examples from S {Step 2: Estimate probabili-

ties}
for all x ∈ S1 do
p̂x ← Prx′∼S2 [x

′ = x] {Estimate px := Prx′∼D[x
′ = x]}

end for
v′ ←r [v − ϵ, v + ϵ] uniformly at random {Step 3: Remove non-v′-heavy-hitters}
Remove from S1 all x for which p̂x < v′.
return S1

Algorithm rHeavyHitters returns exactly the list of v′-heavy-hitters so long as the following
hold:

1. In Step 1 of Algorithm 1, all (v − ϵ)-heavy-hitters of D are included in S1.

2. In Step 2, the probabilities p̂x for all x ∈ S1 are correctly estimated to within error
ρϵ/(3m1).

3. In Step 3, the randomly sampled v′ does not fall within an interval of width ρϵ/(3m1)
centered on the true probability of a (v − ϵ)-heavy-hitter of D.

We show that these 3 conditions will hold with probability at least 1− ρ/2, and so will hold
for two executions with probability at least 1− ρ.

Lemma 1.3. For all ε ∈ (0, 1/2), v ∈ (ε, 1− ε), with probability at least 1−ρ, rHeavyHitters
is reproducible, returns a list of v′-heavy-hitters for some v′ ∈ [v − ε, v + ε], and has sample

complexity Õ
(

1
ρ2ϵ2(v−ϵ)2

)
.

Proof. We say Step 1 of Algorithm 1 succeeds if all (v − ϵ)-heavy-hitters of D are included
in S1 after Step 1. By definition, a v − ε-heavy-hitter has probability at least v − ε under

D, so the probability it’s not included in S1 which is of size m1 is

Pr
S1∼D

[x ̸∈ S1] ≤ (1− v + ε)m1

≤ (e−v+ε)m1

= e− ln(6/(ρ(v−ε)))

= e
ln ρ(v−ε)

6

=
ρ(v − ε)

6
.

There are at most 1
v−ε

(v − ϵ)-heavy-hitters in any distribution, so union bounding over all
of them, we see that

Pr
S1∼D

[∃ v-heavy-hitter x, x ̸∈ S1] ≤
1

v − ε

ρ(v − ε)

6

= ρ/6.

So Step 1 succeeds except with probability at most ρ/6.

Step 2 succeeds if the probabilities for all x ∈ S1 are correctly estimated to within

error ρϵ/(3m1). We draw m2 =
9 ln(6m1/ρ)m2

1

(ρε)2
examples from D to estimate the probability.

Applying the Chernoff-Hoeffding inequality, it follows that

Pr
S2∼D

[| 1
|S2|

∑
x′∈S1

1[x′ = x]− Pr
x′∼S2

[x′ = x]| ≥ t] ≤ 2e−2t2m2

⇒ Pr
S2∼D

[| 1
|S2|

∑
x′∈S1

1[x′ = x]− Pr
x′∼S2

[x′ = x]| ≥ ρε

3m1

] ≤ 2e
−2ρ2ε2m2

9m2
1

≤ 2e− ln 12m1/ρ

=
ρ

6m1

.

So each px is estimated to within error ρϵ
3m1

except with probability at most ρ
6m1

in Step 2.
Union bounding over all m1 possible x ∈ S1,

Pr
S2∼D

[∃px with estimation error > ρε
3m1

] ≤ ρ

6

so Step 2 succeeds except with probability ρ/6.

Step 3 succeeds if the returned S1 is exactly the set of v′-heavy-hitters of D. Conditioned
on the previous steps succeeding, Step 3 succeeds if the randomly chosen v′ is not within
ρϵ

3m1
of the true probability of any x ∈ S under distribution D. A v′ chosen randomly from

the interval [v − ϵ, v + ϵ] lands in any given subinterval of width ρϵ/(3m1) with probability
ρ/(6m1),

Pr
v′∼Unif([v−ε,v+ε])

[v′ ∈ [px, p̂x]] ≤ ρϵ
3m1
· 1
2ε

= ρ
6m1

.

Union bounding over the m1 elements in S1, Step 3 succeeds with except with probability
at most ρ/6.

Therefore, Algorithm 1 outputs exactly the set of v′-heavy-hitters of D except with
probability at most ρ/2. If we consider two executions of Algorithm 1, both using the same
shared randomness for chooosing v′, they will both output the set of v′-heavy-hitters of D
except with probability at most ρ, and so rHeavyHitters is ρ-replicable.

The sample complexity is

m1 +m2 ∈ Ω̃

(
1

(ρϵ(v − ϵ))2

)
.

Corollary 1.4. If v and ε are constants, then rHeavyHittersρ,v,ε has sample complexity

Õ (1/ρ2).

Learning Heavy-hitters using Statistical Queries. Next, we show that any statistical
query algorithm for the v-heavy-hitters problem requires Ω(log |X |/ log(1/τ)) calls to the
SQ oracle. Since Algorithm 1 has a sample complexity independent of the domain size, this
implies a separation between reproducible problems and problems solvable using only SQ
queries.

Consider the ensemble {Dx}x∈X on X , where distribution Dx is supported entirely on a
single x ∈ X .

Claim 1.5 (Learning Heavy-hitters using Statistical Queries). Any statistical query algo-
rithm for the v-heavy-hitters problem on ensemble {Dx}x∈X requires Ω(log |X |/ log(1/τ))
calls to the SQ oracle.

Proof. An SQ algorithm for the v-heavy-hitters problem must, for each distribution Dx,
output set {x} with high probability. An SQ oracle is allowed tolerance τ in its response to
statistical query ϕ. So, for any ϕ, there must be some distribution Dx for which the following
holds: at least a τ -fraction of the distributions Dx′ in the ensemble satisfy |ϕ(x′)−ϕ(x)| ≤ τ .
Thus, in the worst case, any correct SQ algorithm can rule out at most a (1− τ)-fraction of
the distributions in the ensemble with one query. If X is finite, then an SQ algorithm needs
at least log1/τ (|X |) queries.

2 Replicable learning of finite hypothesis classes

Now that we’ve seen natural settings in which our reduction is tight (and therefore exhibited
a quadratic statistical separation between privacy and replicability), it is reasonable to ask
whether there are any settings under which the reduction is loose, or even where privacy
and replicability might have the same statistical cost. In this section, we’ll show this is
indeed the case for (certain regimes of) a closely related problem: realizable PAC-learning.
In particular, in this section we exhibit a replicable algorithm for PAC-learning that gives a
quadratically improved dependence on the accuracy and confidence parameters over applying
our reduction from privacy (see thm:finitehypred).

Theorem 2.1 (Finite Classes are Replicably Learnable). Any class H is replicably Agnostic
learnable with sample complexity:

m(ρ, α, β) ≤ O

(
log2 |H|+ log 1

ρβ

α2ρ2
log3

1

ρ

)
.

In the realizable setting, the α-dependence can be improved to linear:

m(ρ, α, β) ≤ O

(
log2 |H|+ log 1

ρβ

αρ2
log3

1

ρ

)
.

thm:rFinite gives a quadratic improvement over the sample complexity via reduction from
private learning in both confidence and accuracy, and in particular has the same asymptotic
dependence as in private PAC-learning (and hence avoids any statistical blowup in the setting
where log |H| is thought of as small). In fact, it’s worth noting the result is tight in these
parameters, as even standard PAC-learning requires the same dependencies.

2.0.1 Algorithm

At its core, the algorithm achieving thm:rFinite relies on a simple random thresholding
trick. In particular, the idea is roughly to estimate the risk of each concept in the class H by
standard uniform convergence bounds, choose a random error threshold v ∈ [OPT,OPT+α],
and finally output a random f ∈ H with empirical error S(f) = 1

|S|
∑

(x,y)∈S
1[f(x) ̸= y] at

most v. Implementing this strategy requires a bit more effort, and is achieved formally by
the following algorithm.

Algorithm 2 (Intermediate) Replicable Learner for Finite Classes

Replicably outputs hypothesis with error at most OPT + α Input: Finite Class H, Joint
Distribution D over X × {0, 1} (Sample Access)
Parameters:

• Replicability, Accuracy, Confidence ρ, α, β > 0

• Sample Complexity m = m(ρ, α, β) ≤ O

(
log2 |H| log 1

ρ
+ρ2 log 1

β

α2ρ4

)
• Replicability bucket size τ ≤ O(αρ

ln |H|)

Algorithm:

1. Draw a labeled sample S ∼ Dm and compute S(f) for every f ∈ H.

2. Replicably output initialization vinit ∈ [OPT,OPT+α/2] (see alg:agnostic-subroutine)

3. Select random threshold v ←r {vinit + 3
2
τ, vinit +

5
2
τ, . . . , vinit + α/4− τ/2}

4. Randomly order all f ∈ H

return Output the first hypothesis f in the order s.t. S(f) ≤ v.

We note that Step 2, estimating OPT, follows essentially the same argument as the
basic replicable statistical query algorithm of ?. We give the argument in app:OPT for
completeness.

We note that while Algorithm rFinite is a replicable agnostic PAC learner, it is not quite
sufficient to prove thm:rFinite due to its poor dependence on ρ. We’ll see in the next section
how to obtain the stated parameters by separately amplifying rFinite starting from good
constant replicability.

2.0.2 Analysis

We’ll start by proving the following weaker bound for our intermediate learner.

Theorem 2.2 (Intermediate Learnability of Finite Classes). Let H be any finite concept
class. Algorithm rFinite is a (proper) agnostic replicable learning algorithm for H with sample
complexity:

m(ρ, α, β) ≤ O

(
log2 |H| log(1

ρ
) + ρ2 log 1

β

α2ρ4

)
.

In the realizable setting, the (α, β)-dependence can be improved to:

m(ρ, α, β) ≤ O

(
log2 |H| log(1

ρ
) + ρ4 log 1

β

αρ4

)
.

The main challenge in thm:intermediate-learner is proving replicability. (Accuracy and
failure probability are essentially immediate from standard uniform convergence arguments.)
To this end, note that the randomness r used by rFinite is largely broken into three parts:
estimating OPT, choosing a random threshold, and ordering the concepts in H. We’ll focus
first on the latter two, where the choice of v restricts H to two subsets H1 and H2 (those
with empirical error at most v), depending on input samples S1 and S2. We first appeal to
the classical observation of Broder ? to argue that as long as the symmetric difference of
H1 and H2 are small, outputting the first concept from these sets (according to the random
ordering) is a replicable procedure.

Let O(H, r) be a random ordering of concept class H. Let ∅ ⊂ H1, H2 ⊆ H, and let
f1 and f2 be the first elements of H1 and H2 respectively according to O(H, r). Then

Prr[f1 ̸= f2] =
|H1∆H2|
|H1∪H2| , where ∆ denotes the symmetric difference.

The key to proving replicability is then to observe that most choices of v induce small
symmetric difference between the corresponding H1 and H2. Namely, the idea is to observe
that for any fixed joint distribution D, intervals

I0 = [OPT,OPT + τ], . . . , Iα/(2τ) = [OPT + α/2− τ, OPT + α/2],

and corresponding threshold positions vi = OPT + (2i+1)
2

τ , the sets

H
(i)
1 = {h ∈ H : S1(h) ≤ vi}, H

(i)
2 = {h ∈ H : S2(h) ≤ vi}

are close for most choices of vi, S1, and S2. To adjust for the fact that we don’t know the
value of OPT, we will in fact prove something slightly more general that allows our starting
point to range anywhere from OPT to OPT + α/2.

Lemma 2.3. Let vinit ∈ [OPT,OPT + α/2] and τ ≤ O
(

αρ2

log |H|

)
a parameter that divides

α/4. Define the intervals

I0 = [vinit, vinit + τ), I1 = [vinit + τ, vinit + 2τ), . . . , I α
4τ

=

[
vinit +

1

4
α− τ, vinit +

1

4
α

]
and corresponding thresholds vi = vinit +

(2i+1)
2

τ , and let

H
(i)
1 = {h ∈ H : S1(h) ≤ vi}, H

(i)
2 = {h ∈ H : S2(h) ≤ vi}

denote the hypotheses with empirical error at most vi across two independent samples S1 and
S2 of size O(log ρ

−1

τ2
). Then with probability at least 1 − ρ/4, a uniformly random choice of

i ∈ [α
4τ
] satisfies:

|H(i)
1 ∆H

(i)
2 |

|H(i)
1 ∪H

(i)
2 |
≤ ρ/4.

Proof. For convenience of notation, let |Ii| denote the number of hypotheses whose true risk
lies in interval Ii, and |I[i]| the number of hypotheses in intervals up through Ii. We call a
threshold vi “bad” if any of the following conditions hold.

1. The ith interval has too many elements:

|Ii| >
ρ

30
|I[i−1]|.

2. The number of elements beyond Ii increases too quickly:

∃j ≥ 1 : |Ii+j| ≥ ej|I[i−1]|.

and “good” otherwise. We will argue the following two claims.

1. If vi is a good threshold, then H
(i)
1 and H

(i)
2 are probably close

Pr
S1,S2

[
|H(i)

1 ∆H
(i)
2 |

|H(i)
1 ∪H

(i)
2 |
≤ ρ

4

]
≥ 1− ρ

8
.

2. At most a ρ
8
fraction of thresholds are bad.

Since we pick a threshold uniformly at random, it is good with probability at least 1− ρ/8
and a union bound gives the desired result.

It remains to prove the claims. For the first, observe that for any fixed hypothesis h with
true risk D(h) ∈ Ii+j, the probability that the empirical risk of h is less than vi is at most

Pr[S(h) ≤ vi] ≤ e−Ω(j2τ2|S|) (1)

by a Chernoff bound. Let xi denote the variable which counts the number of hypotheses
with true risk beyond Ii that cross the threshold vi empirically. If vi is “good,” we can bound
E[xi] by

E[xi] ≤ |I[i−1]|
∑
j>0

e−Ω(j2τ2|S|−j) ≤ ρ2

2000
|I[i−1]|

for our choice of |S|. Markov’s inequality then promises

Pr
[
xi ≥

ρ

30
|I[i−1]|

]
≤ ρ

64
.

On the other hand, the probability any hypothesis in I[i−1] crosses vi is at most e−Ω(τ2|S|), so
similarly the probability that more than a ρ

30
fraction of such hypotheses cross vi is at most

ρ
64
. Finally, since vi is ‘good,’ Ii itself contributes at most ρ

30
|I[i−1]| hypotheses that cross the

threshold in the worst case, so in total we have that with probability at least 1− ρ
32
, at most

ρ
10
|I[i−1]| hypotheses cross the threshold in either direction. Considered over two runs of the

algorithm, this implies that with probability at least 1− ρ
16
, |H(i)

1 ∆H
(i)
2 | cannot be too big

|H(i)
1 ∆H

(i)
2 | ≤

ρ

5
|I[i−1]|.

Furthermore, since the probability that more than a ρ
30

fraction of hypotheses in I[i−1] cross

vi is at most ρ
64
, we also have that |H(i)

1 ∪H
(i)
2 | cannot be too small:

|H(i)
1 ∪H

(i)
2 | ≥

(
1− ρ

15

)
|I[i−1]|

with probability at least 1− ρ
64
. Thus altogether a union bound gives

Pr
S1,S2

[
|H(i)

1 ∆H
(i)
2 |

|H(i)
1 ∪H

(i)
2 |
≤ ρ

4

]
≥ 1− ρ

8

as desired.
Finally, we need to show that almost all thresholds are good. To see this, first observe

that since vinit ≥ OPT , |I[i]| > 0 for all i ≥ 0. To count the number of bad thresholds,
let i1 ≥ 1 be the position of the first bad threshold, and t1 denote the largest index such
that i1 + t1 fails a condition. Define ij and tj recursively as the first bad threshold beyond
ij−1 + tj−1 and its corresponding latest failure. Observe that by construction, any interval
that does not lie in any [ij.ij + tj] is good, so there are at most

∑
tj bad thresholds.

Let ℓ denote the final index of the above greedy process. By definition of a bad inter-
val, each tj multiplicatively increases the number of total hypotheses from I[ij] by at least(
1 + ρ

30

)tj . Since |I0| ≥ 1 and the total number of hypotheses is |H| by definition, we may
therefore write:

|H| ≥ |I[iℓ+tℓ]| ≥
(
1 +

ρ

30

) ℓ∑
j=1

tj

and thus that the total number of bad intervals is at most

ℓ∑
j=1

tj ≤ O

(
log(|H|)

ρ

)
.

Since we have chosen τ such that the total number of intervals altogether is at least Ω
(

log(|H|)
ρ2

)
,

the appropriate choice of constant gives that at most a ρ/8 fraction are bad as desired.

To complete the argument, it is enough to show we can find a good starting point vinit.

Lemma 2.4. There exists a ρ-replicable algorithm over O

(
log(

|H|
ρβ

)

ρ2α2

)
samples that outputs a

good estimate of OPT with high probability:

Pr
r,S

[
A(S) ∈ [OPT,OPT + α/2]

]
≥ 1− β

References

	Replicable Heavy Hitters
	Replicable learning of finite hypothesis classes
	Algorithm
	Analysis

