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Last time we considered the problem of “replicating” an estimate of the 0-1 loss of a
given model h on distribution D. We proved Hoeffding’s Inequality:

Theorem 0.1 (Hoeffding’s Inequality). Let X1, X2, . . . , Xm be independent, bounded random
variables with Xi ∈ [ai, bi]. Let Sm =

∑m
i=1 Xi. Then

Pr
X1,X2,...,Xm

[Sm ≥ E[Sm] + t] ≤ e
− 2t2∑m

i=1
(bi−ai)

2
.

and applied it to our loss estimation task. We concluded that to ensure

Pr
S∼Dm

[|ℓS(h)− ℓD(h)| ≥ ε] ≤ δ

it suffices to take m ≥ log(2/δ)
2ε2

independent samples from D.
The only thing we used about our replication setting here was that we were computing

the average 0-1 loss, and so the random variables Xi ∈ [0, 1] with probability 1. These kinds
of queries are broadly useful in learning and data analysis beyond just estimating losses. So
much so, that they have their own name.

Definition 0.2 (Statistical Queries [Kearns, 1998]). Let X denote a domain. A statistical
query is a function of the form ϕ : X → [0, 1]. Let D be a distribution on X . The value of
a statistical query ϕ on D is defined Ex∼D[ϕ(x)] (abbreviated ED[ϕ]). We will similarly use
the abbreviation ES[ϕ] =

1
m

∑
x∈S ϕ(x).

The inequality we proved last time applies just as well to any statistical query, and so
we have the following theorem.

Theorem 0.3. Fix any domain X , any distribution D, any statistical query ϕ on X . Then
with probability at least 1− δ over S ∼i.i.d. D

m,

|ED[ϕ]− ES[ϕ]| ≤
√

log(2/δ)

2m

It turns out that this statistical query framework captures a lot of our favorite algorithms:

• gradient descent

• Markov chain monte carlo

• PCA

• K-means clustering

can all be expressed as a sequence of statistical queries. Any algorithm that interacts with
its sample exclusively through statistical queries is called a statistical query algorithm. Un-
derstanding the limits of statistical query algorithms is an active area of research in learning
theory!



Non-Adaptive Statistical Queries

What happens now if we want to make not just one, but multiple statistical queries? Say I
don’t just have one model, but a set H = {hi}ti=1, and I want to estimate the loss for all of
them. Letting ϕh(x, y) = ℓ(h(x), y), we want

Pr[∃h ∈ H s.t. |ES[ϕh]− ED[ϕh]| ≥ ε] ≤ δ.

Claim 0.4. With probability at least 1− δ over S ∼i.i.d. D
m,

max
h∈H
|ES[ϕh]− ED[ϕh]| ≤

√
log(2|H|/δ)

2m

Proof. Let ε =
√

log(2|H|/δ)
2m

Pr[∃h ∈ H s.t. |ES[ϕh]− ED[ϕh]| ≥ ε] = Pr[∪ti=1|ES[ϕhi
]− ED[ϕhi

]| ≥ ε]

≤
t∑

i=1

Pr[|ES[ϕhi
]− ED[ϕhi

]| ≥ ε] union bound

≤ 2|H|e−2ε2m Hoeffding

= δ

Definition 0.5 (Probably Approximately Correct (PAC) Learning [Valiant, 1984]). Fix a
data domain X and let Y = {0, 1}. A model class H is PAC learnable if there exists an
algorithm L and a function m0 : (0, 1)2 → N such that for all distributions D over X × Y ,
any ε, δ ∈ (0, 1), and any m ≥ m0(ε, δ), letting S ∼i.i.d. D

m and h← L(S),

Pr
S
[ℓD(h) ≥ min

h∗∈H
ℓD(h

∗) + ε] ≤ δ

Corollary 0.6. Finite hypothesis classes H are PAC-learnable for m0(ε, δ) ∈ O( log(|H|/δ)
ε2

).

Proof. Consider the following candidate PAC-learning algorithm for a class H.

Algorithm 1 ERM Learner L(S)
for h ∈ H do
ℓS(h) =

1
m

∑m
j=1 ℓ(hi(xj), yj) (one SQ per h)

end for
return argminh∈H ℓS(h)



Let h∗ = argminh∈H ℓD(h) and let h argminh∈H ℓS(h).

Pr
S
[ℓD(h) ≥ ℓD(h

∗) + ε] = Pr
S
[ℓD(h)− ℓD(h

∗) ≥ ε]

= Pr
S
[(ℓD(h)− ℓS(h)) + (ℓS(h)− ℓS(h

∗)) + (ℓS(h
∗)− ℓD(h

∗)) ≥ ε]

≤ Pr
S
[(ℓD(h)− ℓS(h)) + (ℓS(h

∗)− ℓD(h
∗)) ≥ ε]

≤ Pr
S
[ℓD(h)− ℓS(h) ≥ ε/2] + Pr

S
[ℓS(h

∗)− ℓD(h
∗)] ≥ ε/2]

From Claim 0.4, taking m = 2 log(2|H|/δ)
ε2

, we have that except with probability δ,

max
h∈H
|ℓS(h)− ℓD(h)| ≤

√
log(2|H|/δ)

2m
≤ ε/2.

Therefore
Pr
S
[ℓD(h) ≥ ℓD(h

∗) + ε] ≤ δ.
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