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A note on our ERM Experiment

Consider the following test. For a finite hypothesis class H, I believe that my data distribu-
tion D over X × Y can’t be arbitrarily well-modeled by any h ∈ H. That is, I believe there
exists some τ > 0 such that

min
h∈H

ℓD(h) ≥ τ.

We can try to refute this hypothesis using our SQ ERM learner as follows. Set the tolerance

for the SQs to be τ/4. Then collect a sample S1 ∼i.i.d Dm for |S1| ∈ O
(

log(|H|/δ)
τ2

)
, and

publish h1 ← L(S1). Then we can consider two cases:

• if it’s truly the case that minh∈H ℓD(h) ≥ τ , we’ll learn a hypothesis h1 such that
ℓS1(h1) ≥ 3τ

4
, except with probability at most δ.

• if it’s truly the case that minh∈H ℓD(h) < τ/2, we’ll learn a hypothesis h1 such that
ℓS1(h1) ≤ 3τ

4
, except with probability at most δ.

Another team of researchers can then attempt to replicate our results by running the
same algorithm L on their own data S2 ∼i.i.d. D

m. It won’t necessarily be the case that
h1 = h2. However, if it’s truly the case that

min
h∈H

ℓD(h) ≥ τ,

then, as before, ℓS2(h2) ≥ 3τ
4
except with probability at most δ. Therefore

• if it’s truly the case that minh∈H ℓD(h) ≥ τ ,

Pr
S1,S2

[ℓS1(h1) ≥ 3τ
4
∧ ℓS2(h2) ≥ 3τ

4
] ≥ 1− 2δ

• if it’s truly the case that minh∈H ℓD(h) <
τ
2
, PrS1,S2 [ℓS1(h1) ≥ 3τ

4
∧ ℓS2(h2) ≥ 3τ

4
] ≤ δ2

Note that even if this replication effort is successful, we can’t conclude that our hypothesis
is correct. There’s still some chance that we drew misleading samples both times. Every
successful replication effort, however, drives the probability of undetected “false discovery”
down exponentially quickly (just like doubling our sample size).



Algorithmic Replicability

In our previous examples, we’ve been concerned with replicating the loss of the model h1

produced by running L on S1. We showed that we could do this with good probability with
a large enough sample S2, but what if we wanted to replicate some other property of h1 or
replicate the model h1 itself?

Definition 0.1 (Replicability [Impagliazzo et al., 2022]). A randomized algorithm L is
replicable if there exist fns m0, ℓ0 : R × R × R → N such that for any ρ, ε, δ > 0 and any
distribution D, letting m ≥ m0(ρ, ε, δ) and ℓ ≥ ℓ0(ρ, ε, δ),

Pr
S0,S1∼Dm

r∼{0,1}ℓ

[L(S0; r) ̸= L(S1; r)] ≤ ρ

This definition is essentially equivalent to the notion of pseudo-global stability introduced
in Ghazi et al. [2021].

Can we design a replicable version of our empirical risk minimization learner? All we
really did was make a sequence of |H| non-adaptive statistical queries, so let’s start by seeing
if we can replicably answer a single statistical query.

Algorithm 1 rSTATτ (ϕ, S)
Inputs/Parameters:
τ - tolerance parameter
δ - accuracy failure probability
ρ - replicability failure parameter
ϕ: a query X → [0, 1]
S: an i.i.d. sample of size m from D

1: α = 2τ
ρ+1−2δ

2: αoff ←r [0, α]
3: Split [0, 1] in regions: R = {[0, αoff), [αoff, αoff+α), . . . , [αoff+iα, αoff+(i+1)α), . . . , [αoff+

kα, 1)}
4: v ← 1

|S|
∑
x∈S

ϕ(x)

5: Let rv denote the region in R that contains v
6: return the midpoint of region rv

We now upper bound the sample complexity of rSTAT.

Theorem 0.2. Let τ > 0. Then rSTATτ is a replicable algorithm for answering statistical

queries up to tolerance τ , with m0 ∈ O
(

log(1/δ)
τ2(ρ−δ)2

)
.

Proof. We begin by showing that rSTATτ answers statistical queries up to tolerance τ , except
with probability δ.



Let τ ′ = τ(ρ−2δ)
ρ+1−2δ

. Recall α = 2τ
ρ+1−2δ

, so 2τ ′

α
= ρ− 2δ. Hoeffding’s inequality gives us that

|ES[ϕ]− ED[ϕ]| ≤ τ ′ =
τ(ρ− 2δ)

ρ+ 1− 2δ

except with failure probability δ, so long as |S| ≥ log(2/δ)

2τ ′2
. Outputting the midpoint of region

rv can further offset this result by at most α
2
= τ

ρ+1−2δ
. Therefore

|v − ED ϕ| ≤ τ(ρ− 2δ)

ρ+ 1− 2δ
+

τ

ρ+ 1− 2δ
= τ,

except with probability δ, so long as the sample S satisfies |S| ≥ log(2/δ)

2τ ′2
. Unpacking τ ′, we

see that taking |S| ∈ O
(

log(1/δ)
τ2(ρ−δ)2

)
suffices.

We now show that rSTATτ is replicable. Denote by v1 and v2 the values returned by the
parallel runs rSTAT(S1; r) and rSTAT(S2; r) at line 4. We consider two cases for failure of
replicability:

1. |v1 − v2| > 2τ ′ and some region’s boundary falls between v1 and v2

2. |v1 − v2| ≤ 2τ ′ and some region’s boundary falls between v1 and v2

We bound the probability of the first case by bounding

Pr
S1,S2

[|v1 − v2| > 2τ ′] ≤ Pr
S1

[|v1 − ED[ϕ]| ≥ τ ′] + Pr
S2

[|v2 − ED[ϕ]| ≥ τ ′]

≤ 2δ

The second case remains. Since αoff is chosen uniformly in [0, α], we have

Pr
αoff

[rv1 ̸= rv2 ] =
2τ ′

α
= ρ− 2δ

Union bounding over these two events gives

Pr
S1,S2,r

[rSTATτ (ϕ, S1) ̸= rSTATτ (ϕ, S2)] = 2δ + ρ− 2δ = ρ.
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