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Let’s consider the problem of determining the bias of a coin. Given a coin that we’re
promised comes up heads with probability either 1/2+ τ or 1/2− τ , how many independent
flips do we need to observe to correctly guess the bias (except with probability δ)?

Notice this is a statistical query. X = {heads : 1, tails : 0}, ϕ(x) = x, and ED[ϕ] =

PrD[heads]. So without replicability, we know we only need O( log(1/δ)
τ2

) (we compute ES[ϕ].
If it’s > 1/2, we guess “heads” bias, otherwise “tails”).

Theorem 0.1. Let τ < 1/4, and ρ, δ < 1/16. Let A be an algorithm that correctly solves the
coin problem except with probability δ (over the internal randomness r and choice of sample
S), and such that

Pr
S1,S2∼Dm

[A(S1; r) ̸= A(S2; r)] ≤ ρ,

even if PrD[heads] ∈ (1/2− τ, 1/2 + τ). Then m ∈ Ω( 1
τ2ρ2

).

Proof. This proof follows in 3 parts:

1. Show that there must exist a random string r∗ such that A is accurate and replicable
with high probability over S ∼ Dp, once we fix A(·, r∗).

2. Show that there must be some probability p∗ such that A(·, r∗) guesses heads with
probability 1/2 over S ∼ Dp∗ . Furthermore, show that the probability A(·, r∗) guesses
heads can’t change too quickly in a O(1/

√
m) interval around p∗.

3. Argue that A(·, r∗) can’t be replicable when it’s guessing heads with probability near
1/2, and so the region in which we’re guessing heads with probability near 1/2 can’t
be too large. We said this interval has width O(1/

√
m), and so m must be large.

Step 1. Let D−τ denote a coin with bias 1/2− τ , let D+τ denote a coin with bias 1/2+ τ ,
and let Dp denote a coin with bias p. Assume we have an algorithm A(S; r) of sample
complexity m that satisfies the above correctness guarantee. That is

• if S ∼ Dm
−τ , PrS∼D−τ ,r[A(S; r) wrong] ≤ δ.

• if S ∼ Dm
+τ , PrS∼D+τ ,r[A(S; r) wrong] ≥ 1− δ.

Let p ∈ [0, 1] denote the bias of a coin. Since A is ρ-reproducible, A is ρ-reproducible for
any distribution on p. In particular, pick p ∼ U([1/2− τ, 1/2 + τ ]). By Markov’s inequality,
each of the following is true with probability at least 3/4 over choice of r:

• PrS∼D−τ [A(S; r) wrong ] ≤ 4δ.



• PrS∼D+τ [A(S; r) wrong ] ≥ 1− 4δ

• When p ∼ U([1/2− τ , 1/2 + τ ]) uniformly, and then S1, S2 ∼ Dp,

Pr
S1,S2

[A(S1; r) = A(S2; r)] ≥ 1− 4ρ.

To see how this follows from Markov, we’ll work out the first case step by step: Let X be
the random variable X = PrS∼D−τ [A(S; r) guesses heads]. Then

Er[X] = Er[ Pr
S∼D−τ

[A(S; r) wrong]] ≤ δ

so Markov tells us that

Pr
r
[ Pr
S∼D−τ

[A(S; r) wrong] ≥ 4δ]

≤ Pr
r
[ Pr
S∼D−τ

[A(S; r) wrong] ≥ 4Er[X]]

= Pr
r
[ Pr
S∼D−τ

[A(S; r) wrong] ≥ 4Er[ Pr
S∼D−τ

[A(S; r) wrong]]]

≤ 1

4
.

By a union bound over these three cases, we see that there must exist an r∗ such that
once we fix the algorithm to run with that randomness r∗, all three cases above hold.

Step 2. Want to show that PrS∼Dm
p
[A(S; r∗) = 1] ∈ Θ(1) for p ∈ I, where |I| ∈ Ω( 1√

m
)

and I ⊂ (1
2
− τ, 1

2
+ τ).

If we can, then we know that for all p ∈ I

Pr
S1,S2∼Dm

p

[A(S1; r
∗) ̸= A(S2; r

∗) | p ∈ I] ∈ Θ(1)

But we showed that when p ∼ U([1/2− τ and 1/2+ τ ]) uniformly, and then S1, S2 ∼ Dp,

Pr
S1,S2

[A(S1; r
∗) ̸= A(S2; r

∗)] < 4ρ.

Then

4ρ > Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗)]

= Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ∈ I] · Pr[p ∈ I]

+ Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ̸∈ I] · Pr[p ̸∈ I]

≥ Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ∈ I] · Pr[p ∈ I]

∈ Θ(Pr[p ∈ I])

∈ Θ( 1
τ
√
m
) ⇒ m > 1

τ2ρ2



Define some shorthand notation:
The probability that A guesses “heads” when j of its m flips come up heads:

aj = Pr
S∼Dm

p

[A(S; r∗) = 1|
∑
x∈S

x = j]

The probability that A guesses “heads” when given a sample S of m flips from Dm
p

H(p) = Pr
S∼Dm

p

[A(S; r∗) = 1]

Note that

H(p) = Pr
S∼Dm

p

[A(S; r∗) = 1]

=
∑
j

aj · Pr
S
[
∑
x∈S

x = j]

=
∑
j

aj

(
m

j

)
pj(1− p)m−j.

Things we know from accuracy and assuming δ < 1/16:

• H(1/2− τ) < 4δ < 1/4

• H(1/2 + τ) > 1− 4δ > 3/4

This is a continuous and differentiable function, and so there must be some p∗ ∈ (1/2 −
τ, 1/2 + τ) with H(p∗) = 1/2. We also know that, because we assumed τ < 1/4, that
(1
2
− τ, 1

2
+ τ) ∈ (1/4, 3/4). So we’ll bound the derivative in this interval.



Now we take the derivative of H with respect to p

H′(p) =
∑
j

aj

(
m

j

)
(jpj−1(1− p)m−j − (m− j)pj(1− p)m−j−1) product rule

=
∑
j

aj

(
m

j

)
pj(1− p)m−j(

j

p
− m− j

1− p
) factor out pj(1− p)m−j

=
∑
j

aj

(
m

j

)
pj(1− p)m−j j −mp

p(1− p)
collect terms

≤
∑
j

(
m

j

)
pj(1− p)m−j j −mp

p(1− p)
aj ≤ 1

=
∑
j

Pr
S
[
∑
x∈S

x = j] · j −mp

p(1− p)

= Ej

[
j −mp

p(1− p)

]
≤ Ej[6(j −mp)] 1

4
< p < 3

4
, so p(1− p) ≥ 1

6

≤ 6Ej[|j −mp|]
∈ O(

√
m) Ej[|j −mp|] ≤

√
Var(j)


