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Last time we defined
H(p) = Pr

S∼Dm
p

[A(S; r∗) = 1]

and showed that H ′(p) ∈ O(
√
m) in 1

4
≤ p ≤ 3

4
. Since the derivative is at most O(

√
m)

everywhere in (1/4, 3/4), there is an interval I of length Ω(1/
√
m) around p∗ so that 1/3 <

H(p) < 2/3 for all p in this interval. Since H(p) ̸∈ (1/3, 2/3) at p = 1/2− τ and p = 1/2+ τ ,
interval I is entirely contained in (1/2− τ, 1/2 + τ). So, there is an Ω(1/τ

√
m) chance that

a random p ∼ U([1/2− τ, 1/2 + τ ]) falls in interval I.

Step 3. For p ∈ I, the probability of replicability failure is significant for this r∗ then!

Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗)] = 2 Pr
S1,S2∼Dp

[A(S1; r
∗) = 1 ∧ A(S2; r

∗) = 0]

= 2 Pr
S1∼Dp

[A(S1; r
∗) = 1] · Pr

S2∼Dp

[A(S2; r
∗) = 0]

= 2H(p)(1− H(p))

> 4/9

We said early on that when p ∼ U([1/2− τ , 1/2 + τ ]) uniformly, and then S1, S2 ∼ Dp,

Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗)] < 4ρ.

Therefore

4ρ > Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗)]

= Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ∈ I] · Pr[p ∈ I]

+ Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ̸∈ I] · Pr[p ̸∈ I]

≥ Pr
S1,S2∼Dp

[A(S1; r
∗) ̸= A(S2; r

∗) | p ∈ I] · Pr[p ∈ I]

∈ 4
9
· Ω

(
1

τ
√
m

)
∈ Ω( 1

τ
√
m
)

Therefore, ρ ∈ Ω(1/τ
√
m) and m ∈ Ω( 1

τ2ρ2
).

Adaptive Statistical Queries

Previously, we proved the following statement about answering statistical queries with em-
pirical estimates:



Claim 0.1. Let ϕ1, · · · , ϕK be arbitrary statistical queries. Then with probability at least
1− δ over S ∼i.i.d. D

m,

max
k∈[K]

|ES[ϕk]− ED[ϕk]| ≤
√

log(2K/δ)

2m

Note that once we fix a sample S ∼i.i.d. D
m, we can no longer meaningfully bound the

deviation |ES[ϕk] − ED[ϕk]| for arbitrary statistical queries. For instance, let D be the

uniform distribution over [N ]. Let S ∼i.i.d. D
m. Then if we take ϕS(x) =

{
1, x ∈ S

0, o/w
we

have ES[ϕS] = 1 and ED[ϕS] ≤ m
N
. Therefore

|ES[ϕS]− ED[ϕS]| ≥ 1− m

N

with probability 1.
Even in our SQ model in which the learner does not get direct access to the sample,

we can still run into issues with generalization when answering adaptive SQs with empirical
estimates. Suppose our data domain is the integers Z and our distribution is uniform over
some large subset of Z. Let ϕ1(x) = 2−x. Then ES[ϕ(x)] =

1
m

∑m
i=1 2

−x and the learner
can determine the sample S completely by inspecting the binary representation of mES[ϕ]
(so long as there aren’t duplicate elements in S, which we can assume whp as long as D is
supported on sufficiently many integers). So if we answer SQs with the empirical average on
our sample, we reduce to the case where the learner has access to the sample itself, and can
select its next query to overfit badly.


