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Domain X = {0, 1}d, Y = {0, 1}.

Overfitting with “natural” adaptive SQs

Algorithm 1 Query learner
Inputs/Parameters: Sample S ∼ Dm

1: P = ∅
2: for i ∈ [d] do

3: ϕi(x, y) =

{
1, xi = y

0, o.w.

4: ai ← 1
m

∑
(x,y)∈S[ϕ(x, y)]

5: if ai ≥ 1
2
+ 1√

m
then

6: P = P ∪ i
7: end if
8: return f(x) = ⌊ 1

|P |
∑

i∈P xi⌉
9: end for

Claim 0.1. When D is the uniform distribution over X × Y, ∃ constant c such that with
probability at least 1− δ, if d ≥ cmax{m, log(1/δ)}:

|accS(f)− accD(f)| ≥ .49

Compare to the accuracy guarantee we have for non-adaptive statistical queries, from
which we would expect

|accS(f)− accD(f)| ∈ O

(√
log(d/δ)

m

)
.

Proof. Let

Xi =

{
1, i ∈ P

0, o.w.



Then
Pr

S∼Dm
[Xi = 1] = Pr

S∼Dm
[ 1
m

∑
(x,y)∈S

1[xi = y] ≥ 1
2
+ 1√

m
]

Let Ai = 1
m

∑
(x,y)∈S 1[xi = y]. Ai is a binomial random variable with ED[Ai] = 1

2
and

standard deviation 1
2
√
m
, and therefore

Pr
D
[Xi = 1] = Pr

D
[Ai ≥ 1

2
+ 1√

m
] ∈ Ω(1).

Therefore, each i gets added to P with constant probability. It follows that

ES∼Dm [|P | =
d∑

i=1

Xi] = Ω(d).

Recall what the Chernoff-Hoeffding inequality gives us for a sum of bounded r.v.’s Xi ∈
[ai, bi], letting Sd =

∑d
i=1 Xi:

Pr
X1,...Xd

[Sd ≤ E[Sd]− t] ≤ e
−2t2∑m

i=1
(bi−ai)

2

applied to |P |, there is a t ∈ Ω(d) such that we have

Pr
S∼Dm

[|P | ∈ o(d)] ≤ Pr
X1,...,Xd

[|P | ≤ E[|P |]− t]

≤ e
−2t2∑d

i=1
(bi−ai)

2

= e
−2t2

d

∈ e−Ω(d)

So there exists some constant c1 such that so long as d > c1 log(1/δ),

Pr
S∼Dm

[|P | ∈ Ω(d)] > 1− δ

Now let’s see how this causes us to get an unreliable empirical estimate of accS(f) if
we reuse the sample S. Let (x, y) ∼ S be chosen uniformly at random. f(x) = y iff∑

i∈P 1[xi = y] ≥ |P |
2
. We have that for each i ∈ P , Pr[xi = y] ≥ 1

2
+ 1√

m
, and so

E(x,y)∼S[
∑
i∈P

1[xi = y]] ≥ |P |
2
+ |P |√

m

Therefore f(x) = y unless
∑

i∈P 1[xi = y] is less than its expectation by at least |P |√
m
. Ap-

plying Chernoff-Hoeffding to the sum of random variables C =
∑

i∈P 1[xi = y], we have

1− accS(f) = Pr
(x,y)∼S

[f(x) ̸= y]

= Pr
(x,y)∼S

[C ≤ E[X]− |P |√
m
]

≤ e
−2|P |2
m|P |

= e
−2|P |

m



So if |P | > ln(100)m
2

, accS(f) = .99. However, accD(f) = 1/2. We already showed that
there exists c1 such that |P | ∈ Ω(d) except with probability δ, so long as d > c1 log(1/δ).

Therefore there exists c2 such that so long as d > c2m, |P | > ln(100)m
2

, and accS(f) = .99.
Letting c = max{c1, c2}, it follows that there exists a c such that with probability at least
1− δ, if d ≥ cmax{m, log(1/δ)}:

|accS(f)− accD(f)| ≥ .49

Observations

• The argument above still goes through when we don’t answer queries with an exact
empirical estimate, but instead add some noise on the order o( 1√

n
) to the estimate.

• We could have done a similar analysis using only the first k− 1 of d features. Redoing
the argument using only k statistical queries instead of d+ 1 gives a bound of

|accS(f)− accD(f)| ∈ Ω(
√
km).

So the best confidence interval we can hope for with k adaptive statistical queries,

answered by empirical estimate over reused data, is O(
√

k
m
). Recall that for k non-

adaptive statistical queries, our bound was O(
√

log k
m

).

• If we want a confidence interval of ε, reusing data in this way doesn’t save us anything,
since we would need m ∈ Ω( k

ε2
) samples... which is k times what we would need for a

single statistical query.

• Could we have made our adaptive algorithm non-adaptive? The first d queries will
non-adaptive, so what if we just committed to estimating the error of every possible f
we might have constructed in our algorithm, rather than the one that was chosen after
looking at the results of our d non-adaptive queries. Would this give a better bound?
There are 2d many subsets of d variables that could be included in P , and therefore
2d different functions f . So we would need to make O(2d) statistical queries, giving a

bound of O(
√

log 2d

m
) = O(

√
d
m
), so no better than the adaptive version.

• Do replicable SQs help? Since the first d queries are non-adaptive, we know that so
long as we use a large enough sample, we can guarantee

Pr
S1,S2,r

[f r
S1

= f r
S2
] > 1− ρ



where f r
Si

= A(Si; r) . It follows that

Pr
S1,r

[accS1(f
r
S1
) ≥ 1

2
+ τ ] = Pr

S1,S2,r
[accS1(f

r
S2
) ≥ 1

2
+ τ | f r

S2
= f r

S1
] · Pr

S1,S2,r
[f r

S2
= f r

S1
]

+ Pr
S1,S2,r

[accS1(f
r
S1
) ≥ 1

2
+ τ | f r

S2
= f r

S1
] · Pr

S1,S2,r
[f r

S2
̸= f r

S1
]

≤ Pr
S1,S2,r

[accS1(f
r
S2
) ≥ 1

2
+ τ | f r

S2
= f r

S1
] · Pr

S1,S2,r
[f r

S2
= f r

S1
] + ρ

≤ Pr
S1,S2,r

[accS1(f
r
S2
) ≥ 1

2
+ τ ] + ρ

= Pr
S1,S2,r

[accS1(f
r
S2
)− ES1,S2,r[accS1(f

r
S2
)] ≥ τ ] + ρ

≤ e−2τ2m + ρ

∈ O(ρ)

so long as we take m ∈ Ω( log 1/ρ
τ2

).

However, to ensure that PrS1,S2,r[f
r
S2
̸= f r

S1
] ≤ ρ, we need to make d non-adaptive

replicable statistical queries with ρ′ = ρ/d, so we need O( d2

τ2ρ2
) samples. Which is

already worse than resampling!


